1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
{
"metadata": {
"name": "",
"signature": "sha256:bee0f8df3068997ca43cf44df4f129c530dc6e34523ca501c99a2183643ee772"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"13: Nuclear Reactions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.1, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m1=7.0183; #mass of 3Li7(amu)\n",
"m2=4.0040; #mass of 2He4(amu)\n",
"m3=1.0082; #mass of 1H1(amu)\n",
"N=6.026*10**26; #Avgraodo no.(per kg atom)\n",
"#rxn = 3Li7 + 1H1 = 2He4 + 2He4 \n",
"\n",
"#Calculation\n",
"delta_m=m1+m3-(2*m2); #deltam(amu)\n",
"E=delta_m*931; #energy per disintegration(MeV)\n",
"n=0.1*N/7; #no of atoms in 100 gm of lithium\n",
"TE=n*E; #Total energy available(MeV) \n",
"\n",
"#Result\n",
"print \"energy available per disintegration is\",round(E,2),\"MeV\"\n",
"print \"Total energy available is\",round(TE/1e+25,2),\"*10**25 MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy available per disintegration is 17.22 MeV\n",
"Total energy available is 14.83 *10**25 MeV\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.2, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m1=6.015126; #mass of 3Li7(a.m.u)\n",
"m2=4.002604; #mass oh 2He4(a.m.u)\n",
"m3=1.00865; #mass of 0n1(a.m.u)\n",
"m4=3.016049; #mass of 1H3(a.m.u)\n",
"#rxn = 3Li7 + 0n1 = 2He4 + 1H3 + Q\n",
"\n",
"#Calculation\n",
"dm=m1+m3-(m2+m4);\n",
"Q=dm*931; #energy released(MeV)\n",
"\n",
"#Result\n",
"print \"energy released is\",round(Q,4),\"MeV\"\n",
"print \"answer given in the book varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy released is 4.7695 MeV\n",
"answer given in the book varies due to rounding off errors\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.3, Page number 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m1=14.007515; #mass of 7N14(a.m.u)\n",
"m2=4.003837; #mass of 2He4(a.m.u)\n",
"m3=17.004533; #mass of 8O17(a.m.u)\n",
"m4=1.008142; #mass of 1H1(a.m.u)\n",
"#rxn = 7N14 + 2He14 = 8O17 + 1H1\n",
"\n",
"#Calculation\n",
"dm=m3+m4-(m1+m2);\n",
"Q=dm*931; #Q value of the reaction(MeV)\n",
"\n",
"#Result\n",
"print \"Q value of the reaction is\",round(Q,3),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Q value of the reaction is 1.232 MeV\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.4, Page number 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m1=14.007520; #mass of 7N14(a.m.u)\n",
"m2=1.008986; #mass oh 0n1(a.m.u)\n",
"#m3=mass of 6C14 in a.m.u\n",
"m4=1.008145; #mass of 1H1(a.m.u)\n",
"#rxn = 7N14 + 0n1 = 6C14 + 1H1 + 0.55 MeV\n",
"\n",
"#Calculation\n",
"Q=0.55; #energy(MeV)\n",
"dm=Q/931; \n",
"m3=dm+m1+m2-m4; #mass of 6C14(a.m.u)\n",
"\n",
"#Result\n",
"print \"mass of 6C14 is\",round(m3,5),\"a.m.u\"\n",
"print \"answer given in the book varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mass of 6C14 is 14.00895 a.m.u\n",
"answer given in the book varies due to rounding off errors\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.6, Page number 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m0=11.01280; #mass 5B11(a.m.u)\n",
"m1=4.00387; #mass of alpha particle(a.m.u)\n",
"m2=14.00752; #mass of 7N14(a.m.u)\n",
"#m3=mass of neutron \n",
"E1=5.250; #energy of alpha particle(MeV)\n",
"E2=2.139; #energy of 7N14(MeV)\n",
"E3=3.260; #energy of 0n1(MeV)\n",
"\n",
"#Calculation\n",
"m3=(m0*931)+((m1*931)+E1)-((m2*931)+E2)-E3; #mass of neutron(a.m.u)\n",
"\n",
"#Result\n",
"print \"mass of neutron is\",round(m3/931,3),\"a.m.u\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mass of neutron is 1.009 a.m.u\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|