summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter9.ipynb
blob: 34acce85412cca8245a66f19d687fe11a51637d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
{
 "metadata": {
  "name": "Chapter9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9:Molecular Structure"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1 Page 270"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "E=-2.7;\n",
      "K=9.0*(10**9)*((1.6*(10**-19))**2)/(0.106*10**-9);# taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n",
      "\n",
      "#calculation\n",
      "q=((K-E*10**-9)/(4*K))*10**-9;                #balancing by multiplying 10^-9 on numerator. to eV.vm terms\n",
      "\n",
      "#result\n",
      "print\"Charge on the sphere required is\",round(q,4),\" times the charge of electron.\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Charge on the sphere required is 0.3105  times the charge of electron.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2 Page 273"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "K=1.44; Req=0.236; # K=e^2/(4*pi*e0)=1.44 eV.nm\n",
      "\n",
      "#calculation\n",
      "Uc=-K/(Req);        #coulomb energy\n",
      "\n",
      "#result\n",
      "print\"The coulomb energy at an equilibrium separation distance in eV is\",round(Uc,3);\n",
      "\n",
      "E=-4.26; delE=1.53;    #various standards values of NaCl\n",
      "Ur=E-Uc-delE; \n",
      "\n",
      "#result\n",
      "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n",
      "\n",
      "#partb\n",
      "Req=0.1;         #pauli repulsion energy\n",
      "Uc=-K/(Req);\n",
      "E=4; delE=1.53;\n",
      "Ur=E-Uc-delE;\n",
      "\n",
      "#result\n",
      "print\"The pauli''s repulsion energy in eV is\",round(Ur,3);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The coulomb energy at an equilirium separation distance in eV is -6.102\n",
        "The pauli''s repulsion energy in eV is 0.312\n",
        "The pauli''s repulsion energy in eV is 16.87\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.3 Page 276"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "from math import pi, sqrt\n",
      "delE=0.50; delR=0.017*10**-9;      #delE= E-Emin; delR=R-Rmin;\n",
      "k=2*(delE)/(delR**2);c=3*10**8;     #force constant\n",
      "m=(1.008)*(931.5*10**6)*0.5;       #mass of molecular hydrogen\n",
      "v= sqrt(k*c**2/m)/(2*pi);          #vibrational frequency\n",
      "h=4.14*(10**-15);\n",
      "\n",
      "#calculation\n",
      "E=h*v;\n",
      "\n",
      "#result\n",
      "print\"The value of corresponding photon energy in eV is\",round(E,3);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of corresponding photon energy in eV is 0.537\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4 Page 280"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "from math import pi, sqrt\n",
      "hc=1240.0;        #in eV.nm\n",
      "m=0.5*1.008*931.5*10**6;              #mass of hydrogen atom\n",
      "Req=0.074;                          #equivalent radius\n",
      "\n",
      "#calculation\n",
      "a=((hc)**2)/(4*(pi**2)*m*(Req**2));  #reduced mass of hydrogen atom\n",
      "for L in range(1,4):\n",
      "        delE= L*a; \n",
      "        print\"The value of energy in eV is\",round(delE,4);                  \n",
      "        w=(hc)/delE;\n",
      "        print\"The respective wavelength in um is\",round(w*10**-3,3);  \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of energy in eV is 0.0151\n",
        "The respective wavelength in um is 81.849\n",
        "The value of energy in eV is 0.0303\n",
        "The respective wavelength in um is 40.925\n",
        "The value of energy in eV is 0.0454\n",
        "The respective wavelength in um is 27.283\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.5 Page 283"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "from math import pi\n",
      "delv=6.2*(10**11);     #change in frequency\n",
      "h=1.05*(10**-34);        #value of h in J.sec\n",
      "\n",
      "#calculation\n",
      "I= h/(2*pi*delv);      #rotational inertia\n",
      "I1=I/(1.684604*10**-45); #to change units\n",
      "\n",
      "#result\n",
      "print\"The value of rotational inertia in kg m2 is %.1e\" %I;\n",
      "print\"which in terms of amu in u.nm2 is\",round(I1,3);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of rotational inertia in kg m2 is 2.69536597172e-47\n",
        "which in terms of amu in u.nm2 is 0.016\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6 Page 286"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "from math import pi\n",
      "delE=0.358;hc=4.14*10**-15;          #hc in eV.nm and delE=1.44eV(given values)\n",
      "\n",
      "#calculation\n",
      "f=(delE)/hc;                        #frequency \n",
      "\n",
      "#result\n",
      "print\"The frequency of the radiation is \",f;\n",
      "\n",
      "\n",
      "m=0.98;                            #mass in terms of u\n",
      "k=4*pi**2*m*f**2;                   #value of k in eV/m^2\n",
      "\n",
      "#result\n",
      "print\"The force constant is\",k; \n",
      "\n",
      "#partb\n",
      "hc=1240.0; m=0.98*1.008*931.5*10**6; Req=0.127;      #various constants in terms of  \n",
      "s=((hc)**2)/(4*(pi**2)*m*(Req**2));                # expected spacing \n",
      "\n",
      "#result\n",
      "print\"The spacing was found out to be\",round(s,3),\"which is very close to the graphical value of 0.0026 eV.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of the radiation is  8.64734299517e+13\n",
        "The force constant is 2.89301831756e+29\n",
        "The spacing was found out to be 0.003 which is very close to the graphical value of 0.0026 eV.\n"
       ]
      }
     ],
     "prompt_number": 19
    }
   ],
   "metadata": {}
  }
 ]
}