1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
{
"metadata": {
"name": "",
"signature": "sha256:75c249ea2e8c0a6e5f6f1e7aa12f02f35c3e7e62df28f6611e18b53d1b7e6dcd"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7: Tunneling Phenomena"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, page no. 235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"h = 1.973 * 10**3 #planck's constant (eV.A'/c)\n",
"me = 511 * 10**3 #mass of electron (eV/c^2)\n",
"U = 10.0\n",
"E = 7.0\n",
"L = 50.00 #thickness of layer (A')\n",
"\n",
"#Calculation\n",
"\n",
"a = math.sqrt(2*me*(U-E))/h\n",
"T=(1.0+(1.0/4.0)*(U**2/(E*(U-E)))*(math.sinh(a*L))**2)**-1\n",
"\n",
"#Result\n",
"\n",
"print \"The transmission coefficient for L=\",L,\"A' is\",round(T/10**-38,3),\"X 10^-38\"\n",
"\n",
"#(b)if the layer thickness is 1.00nm.\n",
"\n",
"#Variable Declaration\n",
"\n",
"L = 10 #thickness of layer (A')\n",
"\n",
"#Calculation\n",
"\n",
"T=(1.0+(1.0/4.0)*(U**2/(E*(U-E)))*(math.sinh(a*L))**2)**-1\n",
"\n",
"#Result\n",
"\n",
"print \"The transmission coefficient for L=\",L,\"A' is\",round(T/10**-7,3),\"X 10^-7\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The transmission coefficient for L= 50.0 A' is 0.963 X 10^-38\n",
"The transmission coefficient for L= 10 A' is 0.657 X 10^-7\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, page no. 236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Variable declaration\n",
"\n",
"e = 1.6 * 10 ** -19 #charge of electron (C)\n",
"I = 1.00 * 10 ** -3 #electron current(A)\n",
"T = 0.657 *10**-7 #Transmission coefficient\n",
"\n",
"#Calculation\n",
"\n",
"Ne = I / e\n",
"Nadj = Ne * T\n",
"Iadj = Nadj * e\n",
"\n",
"#Result\n",
"\n",
"print \"The number of electrons per second continuing on the adjacent wire is\",round(Nadj/10**8,2),\"X 10^8 and the transmitted current is\",round(Iadj/10**-12,1),\"pA.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of electrons per second continuing on the adjacent wire is 4.11 X 10^8 and the transmitted current is 65.7 pA.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5, page no. 241"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable Declaration\n",
"\n",
"e = 1.6 * 10 **-19 #charge of electron(C)\n",
"f = 1.0*10**30 #collision frequency (s^-1.cm^-2)\n",
"Ec = 5.5 * 10 ** 10 \n",
"V = 10 * 10 ** 3 #potential difference(V)\n",
"d = 0.010 * 10**-3 #plate separation(m)\n",
"\n",
"#Calculation\n",
"\n",
"E = V /d\n",
"Te = math.exp(-Ec/E)\n",
"rate = f * Te\n",
"I = e * rate\n",
"\n",
"#result\n",
"\n",
"print \"The tunneling current is\",round(I/10**-12,2),\"pA.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The tunneling current is 0.21 pA.\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6, page no. 244"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"Zth = 90 #atomic number of thorium\n",
"Zdth = 88 #atomic number of thorium's daughter nucleus\n",
"E = 4.05 #energy of ejected alphas(MeV)\n",
"Zpo = 84 #atomic number of polonium\n",
"Zdpo = 82 #atomic number of polonium's daughter nucleus\n",
"Epo = 8.95 #energy of ejected alphas(MeV)\n",
"R = 9.00 #nucleus size(fm)\n",
"r0 = 7.25 #Bohr radius of alpha(fm)\n",
"E0 = 0.0993 #(MeV)\n",
"f = 10 ** 21 #collision frequency(Hz)\n",
"\n",
"\n",
"#Calculation\n",
"\n",
"Te = math.exp(-4*math.pi*Zdth*math.sqrt((E0/E))+ 8 * math.sqrt(Zdth*R/r0))\n",
"rate = f * Te\n",
"t = math.log(2)/rate\n",
"Tep = math.exp(-4*math.pi*Zdpo*math.sqrt((E0/Epo))+ 8 * math.sqrt(Zdpo*R/r0))\n",
"ratep = f * Tep\n",
"tp = math.log(2)/ratep\n",
"\n",
"\n",
"#Result\n",
"\n",
"print \"The half life of thorium is\",round(t/10**17,1),\"X 10^17 s and that of polonium is\",round(tp/10**-10,1),\"X 10^-10 s.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The half life of thorium is 5.4 X 10^17 s and that of polonium is 8.4 X 10^-10 s.\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|