1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
{
"metadata": {
"name": "Chapter6",
"signature": "sha256:36f31f6870acf2c11b00274dcf34bd9e9879abf6f82026373900139ccc4b5799"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6:The Rutherford Bohr Model"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.1 Page 178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sqrt, pi\n",
"R=0.1;Z=79.0; x=1.44; #x=e^2/4*pi*epsi0\n",
"zkR2=2*Z*x/R # from zkR2= (2*Z*e^2)*R^2/(4*pi*epsi0)*R^3\n",
"mv2=10.0*10**6; #MeV=>eV\n",
"\n",
"#calculation\n",
"theta=sqrt(3.0/4)*zkR2/mv2; #deflection angle\n",
"theta=theta*(180/pi); #converting to degrees\n",
"\n",
"#result\n",
"print\"Hence the average deflection angle per collision in degrees is\",round(theta,3 );"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Hence the average deflection angle per collision in degrees.is 0.011\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.2 Page 181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sin, cos, tan, sqrt, pi\n",
"Na=6.023*10**23;p=19.3;M=197.0;\n",
"n=Na*p/M; #The number of nuclei per atom\n",
"t=2*10**-6;Z=79;K=8*10**6;x=1.44; theta=90.0*pi/180; #x=e^2/4*pi*epsi0\n",
"b1=t*Z*x/tan(theta/2)/(2*K) #impact parameter b\n",
"f1=n*pi*b1**2*t #scattering angle greater than 90\n",
"\n",
"#result\n",
"print\"The fraction of alpha particles scattered at angles greater than 90 degrees is %.1e\" %f1;\n",
"\n",
"#part b\n",
"theta=45.0*pi/180;\n",
"b2=t*Z*x/tan(theta/2)/(2*K);\n",
"f2=n*pi*b2**2*t; #scattering angle greater than 45\n",
"fb=f2-f1 #scattering angle between 45 to 90\n",
"\n",
"#result\n",
"print\"The fraction of particles with scattering angle from 45 to 90 is %.1e\" %fb;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fraction of alpha particles scattered at angles greater than 90 degrees is 7.5e-05\n",
"The fraction of particles with scattering angle from 45 to 90 is 3.6e-04\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.3 Page 185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sin, cos, tan, sqrt, pi\n",
"Z=79.0;x=1.44;K=8.0*10**6;z=2; #where x=e^2/4*pi*epsi0;z=2 for alpha particles\n",
"\n",
"#calculation\n",
"d=z*x*Z/K; #distance\n",
"\n",
"#result\n",
"print \"The distance of closest approach in nm. is\",d*10**-9"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The distance of closest approasch in nm. is 2.844e-14\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4 Page 188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"sl=820.1;n0=3.0; #given values\n",
"n=4;w=sl*(n**2/(n**2-n0**2)); \n",
"#result\n",
"print \"The 3 longest possible wavelengths in nm respectively are a.\",round(w,3),; \n",
"\n",
"#partb\n",
"n=5.0;w=sl*(n**2/(n**2-n0**2)); \n",
"\n",
"#result\n",
"print \"b. (in nm)\",round(w,3),;\n",
"\n",
"#partc\n",
"n=6.0;w=sl*(n**2/(n**2-n0**2));\n",
"\n",
"#result\n",
"print \"c. (in nm )\",round(w,3);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The 3 longest possible wavelengths in nm respectively are a. 1874.514 b. (in nm) 1281.406 c. (in nm ) 1093.467\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5 Page 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"sl=364.5;n=3.0; #given variables and various constants are declared in the subsequent steps wherever necessary \n",
"w1=sl*(n**2/(n**2-4)); #longest wavelength of balmer \n",
"c=3.0*10**8;\n",
"f1=c/(w1*10**-9); #corresponding freq.\n",
"n0=1.0;n=2.0; \n",
"\n",
"#calculation\n",
"w2=91.13*(n**2/(n**2-n0**2)); #first longest of lymann \n",
"f2=c/(w2*10**-9); #correspoding freq\n",
"n0=1.0;n=3.0\n",
"w3=91.13*(n**2/(n**2-n0**2)); #second longest of lymann\n",
"f3=3.0*10**8/(w3*10**-9) #corresponding freq.\n",
"\n",
"#result\n",
"print \"The freq. corresponding to the longest wavelength of balmer is %.1e\" %f1,\" & First longest wavelength of Lymann is %.1e\" %f2;\n",
"print\"The sum of which s equal to %.1e\" %(f1+f2);\n",
"print\"The freq. corresponding to 2nd longest wavelength was found out to be %.1e\" %f3,\"Hence Ritz combination principle is satisfied.\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The freq. corresponding to the longest wavelength of balmer is 4.6e+14 & First longest wavelength of Lymann is 2.5e+15\n",
"The sum of which s equal to 2.9e+15\n",
"The freq. corresponding to 2nd longest wavelength was found out to be 2.92622261239e+15 Hence Ritz combination principle is satisfied.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6 Page 192"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"Rinfi=1.097*10**7; #known value \n",
"n1=3.0;n2=2.0; #first 2 given states\n",
"\n",
"#calculation\n",
"w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n",
"\n",
"#result\n",
"print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);\n",
"\n",
"#partb\n",
"n1=4.0;n2=2.0; #second 2 given states \n",
"w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n",
"\n",
"#result\n",
"print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wavelength of trnasition from n1=3 to n2=2 in nm is 656.335\n",
"Wavelength of trnasition from n1=3 to n2=2 in nm is 486.174\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.7 Page 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"n1=3.0;n2=2.0;Z=4.0;hc=1240.0;\n",
"delE=(-13.6)*(Z**2)*((1/(n1**2))-((1/n2**2)));\n",
"\n",
"#calculation\n",
"w=(hc)/delE; #for transition 1\n",
"\n",
"#result\n",
"print \"The wavelngth of radiation for transition(2->3) in nm is\", round(w,3);\n",
"\n",
"#for transition 2\n",
"n1=4.0;n2=2.0; # n values for transition 2\n",
"delE=(-13.6)*(Z**2)*((1/n1**2)-(1/n2**2));\n",
"w=(hc)/delE;\n",
"\n",
"#result\n",
"print \"The wavelngth of radiation emitted for transition(2->4) in nm is\", round(w,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The wavelngth of radiation for transition(2->3) in nm is 41.029\n",
"The wavelngth of radiation emitted for transition(2->4) in nm is 30.392\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|