1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
{
"metadata": {
"name": "",
"signature": "sha256:846e8e3b3770f7cb30a2e91a53718bf5de841338951843c54481c2acfda5e63d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6: Quantum Mechanics in One Dimension"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4, page no. 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"me = 9.11 * 10 ** -31 #mass of electron (kg)\n",
"h = 1.055 * 10**-34 #h/2*pi (J.s)\n",
"dx0 = 1.0 * 10**-10 #initial location of electron(m)\n",
"m = 1.0 * 10**-3 #mass of marble (kg)\n",
"dx0m = 10**-4 #initial location of marble (m)\n",
"\n",
"#Calculation\n",
"\n",
"te = math.sqrt(99)* (2* me / h) * dx0**2\n",
"tm = math.sqrt(99)* (2* m / h) * dx0m**2\n",
"\n",
"#result\n",
"\n",
"print \"The time elapsed for electron is\",round(te/10**-15,1),\"X 10^-15 s and that of marble is \",round(tm/10**24,1),\"X 10^24 s.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time elapsed for electron is 1.7 X 10^-15 s and that of marble is 1.9 X 10^24 s.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5, page no. 202"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"m = 1.0 * 10 **-6 #mass (kg)\n",
"h = 6.626 * 10 **-34 #Planck's constant(J.s)\n",
"n = 1.0\n",
"L = 1.0 * 10**-2 #separation(m)\n",
"\n",
"#Calculation\n",
"\n",
"E1 = n**2 * h**2 /(8*m*L**2)\n",
"v1 = math.sqrt(2*E1/m)\n",
"\n",
"#result\n",
"\n",
"print \"(a) The minimum speed of the particle is\",round(v1/10**-26,2),\"X 10^-26 m/s.\"\n",
"\n",
"\n",
"#Variable declaration\n",
"\n",
"v = 3.00 * 10**-2 #speed of the particle (m/s)\n",
"\n",
"#Calculation\n",
"\n",
"E = m* v**2 /2\n",
"n = math.sqrt(8*m*L**2*E)/h\n",
"\n",
"#results\n",
"\n",
"print \"(b) We get n = \",round(n/10**23,2),\"X 10^23.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The minimum speed of the particle is 3.31 X 10^-26 m/s.\n",
"(b) We get n = 9.06 X 10^23.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6, page no. 203"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"L = 0.2 #length of the box (nm)\n",
"me = 511 * 10 ** 3 #mass of electron (eV/c^2)\n",
"hc = 197.3 #(eV.nm)\n",
"\n",
"#Calculation\n",
"\n",
"E1 = math.pi ** 2 * hc**2 /(2* me * L**2)\n",
"E2 = 2**2 * E1\n",
"dE = E2-E1\n",
"lamda = hc*2*math.pi / dE\n",
"\n",
"#result\n",
"\n",
"print \"The energy required is\",round(dE,1),\"eV and the wavelength of the photon that could cause this transition is\",round(lamda),\"nm.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy required is 28.2 eV and the wavelength of the photon that could cause this transition is 44.0 nm.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.8, page no. 211"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"h = 197.3 #(eV.nm/c)\n",
"m = 511 * 10**3 #mass of electron (eV/c**2)\n",
"U = 100 #(eV)\n",
"L = 0.200 #width(nm)\n",
"\n",
"#Calculation\n",
"\n",
"d = h /math.sqrt(2*m*U)\n",
"E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
"new_U = U - E\n",
"d = h/math.sqrt(2*m*new_U)\n",
"E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
"\n",
"#result\n",
"\n",
"print \"The ground-state energy for the electron is\",round(E,3),\"eV.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ground-state energy for the electron is 6.506 eV.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.13, page no. 217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"\n",
"m = 0.0100 #mass of the spring (kg)\n",
"K = 0.100 #force constant of spring (N/m)\n",
"Kh = 510.5 #force constant of hydrogen (N/m)\n",
"h = 6.582 * 10**-16#Planck's constant (eV.s)\n",
"mu = 8.37 * 10**-28#mass of hydrogen molecule(kg)\n",
"\n",
"#calculation\n",
"\n",
"w = math.sqrt(K / m)\n",
"dE = h * w\n",
"wh =math.sqrt(Kh / mu)\n",
"dEh = h * wh\n",
"\n",
"#results\n",
"\n",
"print \"The quantum level spacing in the spring case is\",round(dE/10**-15,2),\"X 10^-15 eV, while in case of hydrogen molecule it is\",round(dEh,3),\"eV which is easily measurable.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The quantum level spacing in the spring case is 2.08 X 10^-15 eV, while in case of hydrogen molecule it is 0.514 eV which is easily measurable.\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|