summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter4_2.ipynb
blob: 55a7ca0336ecccf453934f03486d9db1309aa488 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "metadata": {
  "name": "MP-4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "The Wave Like Properties of Particles"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.1 Page 101"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import sqrt\nh=6.6*10**-34;                              # h(planck's constant)= 6.6*10^-34 \nm1= 10.0**3;v1=100.0;                           # for automobile\n\n#calculation\nw1= h/(m1*v1);                            # ['w'-wavelength in metre'm'-mass in Kg 'v'-velocity in metres/sec.] of the particles \nm2=10.0*(10**-3);v2= 500;                     # for bullet\nw2=h/(m2*v2);\nm3=(10.0**-9)*(10.0**-3); v3=1.0*10**-2;\nw3=h/(m3*v3);\nm4=9.1*10**-31;k=1*1.6*10**-19;            # k- kinetic energy of the electron & using 1ev = 1.6*10^-19 joule\np=sqrt(2.0*m4*k);                         # p=momentum of electron ;from K=1/2*m*v^2\nw4=h/p;\nhc=1240;pc=100                         # In the extreme relativistc realm, K=E=pc; Given pc=100MeV,hc=1240MeV \nw5= hc/pc;\n\n#result\nprint \"Wavelength of the automobile in m is\",w1;\nprint \"Wavelength of the bullet in m is \",w2 ;\nprint\"Wavelength of the smoke particle in m is\",w3 ;\nprint \"Wavelength of the electron(1ev) in nm is\",round(w4*10**9,3) ;\nprint \"Wavelength of the electron (100Mev) in fm is\",w5;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Wavelength of the automobile in m is 6.6e-39\nWavelength of the bullet in m is  1.32e-34\nWavelength of the smoke particle in m is 6.6e-20\nWavelength of the electron(1ev) in nm is 1.223\nWavelength of the electron (100Mev) in fm is 12\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.2 Page 113"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import pi\n# w=wavelength; consider k=2*(pi/w); \n# differentiate k w.r.t w and replace del(k)/del(w) = 1 for equation.4.3\n# which gives del(w)= w^2 /(2*pi*del(x)), hence \nw=20; delx=200; # delx=200cm and w=20cm\n\n#calculation\ndelw=(w**2)/(delx*2*pi);\n\n#result\nprint \"Hence uncertainity in length in cm is\",round(delw,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Hence uncertainity in length is in cm 0.318\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.3 Page 114"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import pi\ndelt=1.0;             #consider time interval of 1 sec\ndelw=1/delt;        # since delw*delt =1 from equation 4.4\ndelf=0.01          #calculated accuracy is 0.01Hz\n\n#calculation\ndelwc =2*pi*delf # delwc-claimed accuracy from w=2*pi*f\n\n#result\nprint \"The minimum uncertainity calculated is 1rad/sec. The claimed accuracy in rad/sec is \\n\",round(delwc,3);\nprint \"thus there is a reason to doubt the claim\"\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The minimum uncertainity calculated is 1rad/sec. The claimed accuracy is in rad/sec\n0.063\nthus there is a reason to doubt the claim\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.4 Page 115"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import pi\nm=9.11*10**-31;v=3.6*10**6; #'m','v' - mass an velocity of the electron in SI units\nh=1.05*10**-34; #planck's constant in SI\np=m*v; #momentum\ndelp=p*0.01; #due to 1% precision in p\ndelx = h/delp; #uncertainity in position\n\n#result\nprint \"Uncertainity in position in nm is\",round(delx*10**9,2);\n\n#partb\nprint \"Since the motion is strictly along X-direction, its velocity in Y direction is absolutely zero.\\n So uncertainity in velocity along y is zero=> uncertainity in position along y is infinite. \\nSo nothing can be said about its position/motion along \"",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Uncertainity in position in nm is 3.2\nSince the motion is strictly along X-direction, its velocity in Y direction is absolutely zero.\n So uncertainity in velocity along y is zero=> uncertainity in position along y is infinite. \nSo nothing can be said about its position/motion along \n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.5 Page 116"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import pi\nm=0.145;v=42.5; #'m','v' - mass an velocity of the electron in SI units\nh=1.05*10**-34; #planck's constant in SI\np=m*v; #momentum\ndelp=p*0.01;#due to 1% precision in p\n\n#calculation\ndelx = h/delp#uncertainity in position\n\n#result\nprint \"Uncertainity in position is %.1e\" %delx;\n\n#part b\nprint \"Motion along y is unpredictable as long as the veloity along y is exactly known(as zero).\";",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Uncertainity in position is 1.7e-33\nMotion along y is unpredictable as long as the veloity along y is exactly known(as zero).\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.7 Page 119"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import sqrt\nmc2=2.15*10**-4;          #mc2 is the mass of the electron, concidered in Mev for the simplicity in calculations\nhc=197.0                  # The value of h*c in Mev.fm for simplicity\ndelx= 10.0               # Given uncertainity in position=diameter of nucleus= 10 fm\n\n#calculation\ndelp= hc/delx ;       #Uncertainiy in momentum per unit 'c' i.e (Mev/c) delp= h/delx =(h*c)/(c*delx);hc=197 Mev.fm  1Mev=1.6*10^-13 Joules')\np=delp;               # Equating delp to p  as a consequence of equation 4.10\nK1=p**2+mc2**2   # The following 3 steps are the steps invlolved in calculating K.E= sqrt((p*c)^2 + (mc^2)^2)- m*c^2\nK1=sqrt(K1)\nK1= K1-(mc2);\n\n#result\nprint \"Kinetic energy was found out to be in Mev is\", round(K1,3)",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Kinetic energy was found out to be in Mev 19.7\n"
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.8 Page 120"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nh=6.58*10**-16; # plack's constant\ndelt1=26.0*10**-9;E1=140.0*10**6 #given values of lifetime and rest energy of charged pi meson\ndelt2=8.3*10**-17;E2=135.0*10**6;  #given values of lifetime and rest energy of uncharged pi meson\ndelt3=4.4*10**-24;E3=765*10**6;       #given values of lifetime and rest energy of rho meson\n\n#calculation\ndelE1=h/delt1; k1=delE1/E1;  # k is the measure of uncertainity\ndelE2=h/delt2; k2=delE2/E2;\ndelE3=h/delt3; k3=delE3/E3;\n\n#result\nprint \"Uncertainity in energy of charged pi meson is %.1e\" %k1;\nprint \"Uncertainity in energy of uncharged pi meson is %.1e\" %k2;\nprint \"Uncertainity in energy of rho meson is \",round(k3,2);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Uncertainity in energy of charged pi meson is 1.8e-16\nUncertainity in energy of uncharged pi meson is 5.9e-08\nUncertainity in energy of rho meson is  0.2\n"
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4.9 Page 121"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nh=1.05*10**-34;  #value of planck's constant in J.sec\ndelx= 1.0;        # uncertainity in positon= dimension of the ball\ndelp=h/delx;    # uncertainity in momentum \nm=0.1;         #mass of the ball in kg\n\n#calculation\ndelv=delp/m;    # uncertainity in velocity\n\n#result\nprint \"The value of minimum velocity was found out to be in m/sec\",delv;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The value of minimum velocity was found out to be in m/sec 1.05e-33\n"
      }
     ],
     "prompt_number": 17
    }
   ],
   "metadata": {}
  }
 ]
}