1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
{
"metadata": {
"name": "Chapter3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3:The particle like properties of electromagnetic radiation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sin,pi\n",
"w=0.250; theta=26.3;n=1 # n=1 for hydrogen atom and rest all are given values\n",
"\n",
"#calculation\n",
"d=n*w/(2*sin(theta*pi/180)); # bragg's law\n",
"\n",
"#result\n",
"print \"Hence the atomic spacing in nm is\",round(d,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Hence the atomic spacing in nm is 0.282\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page 73"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import pi,sin\n",
"I=120.0;r=0.1*10**-9;Eev=2.3 #I-intensity in W/m^2 r in m & E in electron volt\n",
"A=pi*r**2;K=1.6*10**-19; # A=area and K is conversion factor from ev to joules\n",
"\n",
"#calculation\n",
"t= Eev*K/(I*A); #time interval\n",
"\n",
"#result\n",
"print \"The value of time interval was found out to be in sec is\",round(t,3);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of time interval was found out to be in sec is 0.098\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page 76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import pi,sin\n",
"w=650.0*10**-9;h=6.63*10**-34;c=3*10**8; #given values and constant taken in comfortable units\n",
"\n",
"#calculation\n",
"E=h*c/w; \n",
"E1=E/(1.6*10**-19);\n",
"\n",
"#result\n",
"print \"The Energy of the electron in J \",E,\"which is equivalent to in eV is \", round(E1,3);\n",
"print \"The momentum of electron is p=E/c i.e is \", round(E1,3);\n",
"\n",
"#part b\n",
"E2=2.40; #given energy of photon.\n",
"\n",
"#calculation\n",
"w2=h*c*10**9/(E2*1.6*10**9); #converting the energy in to eV and nm \n",
"\n",
"#result\n",
"print \"The wavelength of the photon in m is\",round(w2*10**28,0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Energy of the electron in J 3.06e-19 which is equivalent to in eV is 1.912\n",
"The momentum of electron is p=E/c i.e is 1.912\n",
"The wavelength of the photon in m is 518.0\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page 78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"hc=1240.0; phi=4.52 #both the values are in eV\n",
"\n",
"#calcualtion\n",
"w1=hc/phi; \n",
"\n",
"#result\n",
"print \"The cutoff wavelength of the tungsten metal in nm is \",round(w1,3);\n",
"\n",
"#part b\n",
"w2=198.0; #given value of wavelength \n",
"\n",
"#calculation\n",
"Kmax=(hc/w2)-phi;\n",
"\n",
"#result\n",
"print 'The max value of kinetic energy in eV is',round(Kmax,3);\n",
"\n",
"#part c\n",
"Vs=Kmax;\n",
"\n",
"#result\n",
"print \"The numerical value of the max kinetic energy is same as stopping potential in volts.Hence in V is\",round(Vs,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cutoff wavelength of the tungsten metal in fnm is 274.336\n",
"The max value of kinetic energy in eV is 1.743\n",
"The numerical value of the max kinetic energy is same as stopping potential in volts.Hence in V is 1.743\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"T1=293.0; Kw=2.898*10**-3;\n",
"\n",
"#calculation\n",
"w1=Kw/T1;\n",
"\n",
"#result\n",
"print \"The wavelength at which emits maximum radiation in um. is\",round(w1*10**6,3);\n",
"\n",
"#part b\n",
"w2=650.0*10**-9; \n",
"T2=Kw/w2;\n",
"\n",
"#result\n",
"print 'The temperature of the object must be raised to in K. is',round(T2,3);\n",
"\n",
"#part c\n",
"x=(T2/T1)**4; \n",
"\n",
"#result\n",
"print \"Thus the thermal radiation at higher temperature in times the room (lower) tempertaure. is\",round(x,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The wavelength at which emits maximum radiation in um. is 9.891\n",
"The temperature of the object must be raised to in K. is 4458.462\n",
"Thus the thermal radiation at higher temperature in times the room (lower) tempertaure. is 53612.939\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page 82"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"#part a\n",
"from math import cos, sin, pi,atan\n",
"w1=0.24;wc=0.00243;theta=60.0; #given values w=wavelength(lambeda)\n",
"\n",
"#calculation\n",
"w2=w1+(wc*(1-cos(theta*pi/180))); \n",
"\n",
"#result\n",
"print \"The wavelength of x-rays after scattering in nm is\",round(w2,5);\n",
"\n",
"#part b;\n",
"hc=1240;\n",
"E2=hc/w2;E1=hc/w1; \n",
"\n",
"#result\n",
"print \"The energy of scattered x-rays in eV is\",round(E2,3);\n",
"\n",
"#part c\n",
"K= E1-E2; #The kinetic energy is the difference in the energy before and after the collision;\n",
"\n",
"print \"The kinetic energy of the x-rays in eV is\",round(K,3);\n",
"\n",
"#part d\n",
"phi2=atan(E2*sin(theta*pi/180)/(E1-E2*cos(theta*pi/180)))\n",
"\n",
"#result\n",
"print \"The direction of the scattered eletron in degrees is\",round(phi2*180/pi,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The wavelength of x-rays after scattering in nm is 0.24121\n",
"The energy of scattered x-rays in eV is 5140.642\n",
"The kinetic energy of the x-rays in eV is 26.025\n",
"The direction of the scattered eletron in degrees is 59.749\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|