1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
{
"metadata": {
"name": "Chapter13",
"signature": "sha256:3612dc1ad0c2617d4c1e1da21ea7791334391562bfe93ddc9d0f98037d4fe15d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13:Nuclear Reaction and Application"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.1, Page 417"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"v=1*1.0*10**-6.0*10**2; p=7.9; m=p*v;Na=6.023*10**23 #given values and various constants in suitable units\n",
"M=56.0;N=m*Na/M; #number of atoms\n",
"i=3.0*10**-6;\n",
"q=1.6*10**-19;\n",
"\n",
"#calculation\n",
"Io=i/q; #intensity\n",
"s=0.6*10**-24;S=1; #given values in suitable units\n",
"R=N*s*Io/S; #rate of neutrons\n",
"\n",
"#result\n",
"print\"The rate of neutrons emitted from the target in particles per second is %.1e\" %round(R,3);\n",
"print\"Slight difference in answer due to approximation error\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of neutrons emitted from the target in particles per second is 9.6e+07\n",
"slight difference due to approximation error\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2, Page 419"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"A=197.0; m=30*10**-3;phi=3.0*10**12; #given values and various constants taken in suitable units\n",
"Ar=99.0*10**-24; Na=6.023*10**23\n",
"\n",
"#calculation\n",
"R=(phi*Na*Ar*m/A); #rate or production of gold\n",
"t=2.7*24*60 # time of decay\n",
"Act=R*(0.693/t); #activity /sec\n",
"ActCi=Act/(3.7*10**4); # in terms of curie(Ci)\n",
"\n",
"#result\n",
"print\"The activity is found out to be %.1e\" %round(Act,3),\"/sec i.e \" ,round(ActCi,3),\"muCi\"\n",
"print\"Slight difference in answer due to approximation error\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The activity is found out to be 4.9e+06 /sec i.e 131.229 muCi\n",
"slight difference due to approximation error\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3, Page 423"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import exp\n",
"v=1.5*1.5*2.5*(10**-6)*10**2; #volume in cm3\n",
"p=8.9; #density in g/cm3\n",
"m=p*v;Na=6.023*10**23 #mass and Avagadro's number\n",
"M=58.9; #Given values\n",
"\n",
"#calculation\n",
"N=m*Na/M;\n",
"i=12*10**-6; #thickness of beam\n",
"q=1.6*10**-19;\n",
"Io=i/(2*q); #intensity\n",
"s=0.64*10**-24; #Given values\n",
"S=1.5*1.5;\n",
"R=N*s*Io/S; #rate of production of 61Cu\n",
"\n",
"#result\n",
"print \"The rate of neutrons emitted from the target in particles/second is %.1e\" %round(R,3);\n",
"\n",
"#part b\n",
"act=R*(1-(exp((0.693)*(-2/3.41)))); #activity\n",
"\n",
"#result\n",
"print\"The activity after 2.0h in /sec is %.1e\" %round(act,3),\"=4.9mCi\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of neutrons emitted from the target in particles/second is 5.5e+08\n",
"The activity after 2.0h in /sec is 1.8e+08 =4.9mCi\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.4, Page 425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"m2H=2.014102; #mass of various particles\n",
"mn=1.008665;m63Cu=62.929599;\n",
"m64Zn=63.929145;c2=931.5; #c^2=931.5 MeV\n",
"Q=(m2H+m63Cu-mn-m64Zn)*c2; #Q of the reaction\n",
"\n",
"#result\n",
"print\"The value of Q is in MeV\",round(Q,3);\n",
"\n",
"\n",
"#part b\n",
"Kx=12.00;Ky=16.85;\n",
"Ky=Q+Kx-Ky #kinetic energy of 64Zn\n",
"\n",
"#result\n",
"print\"The value of Ky was found out to be in MeV\",round(Ky,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of Q is in MeV 5.487\n",
"The value of Ky was found out to be in MeV 0.637\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.5, Page 425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"mp=1.007825;m3H=3.016049; #mass of the particle\n",
"m2H=2.014102;c2=931.5; #constant\n",
"Q=(mp+m3H-(2*m2H))*c2; #Q of the reaction\n",
"\n",
"#result\n",
"print\"The value of q was found out to be in MeV\",round(Q,3);\n",
"\n",
"#partb\n",
"Kth1= -Q*(1+(mp/m3H)); #threshold energy of kinetic energy\n",
"Kth2=-Q*(1+(m3H/mp)); #threshold kinetic energy in case2\n",
"\n",
"#result\n",
"print\"The threshold kinetic energy in case-1 in MeV\",round(Kth1,3);\n",
"print\"The threshold kinetic energy in case-2 in MeV\",round(Kth2,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of q was found out to be in MeV -4.033\n",
"The threshold kinetic energy in case-1 in MeV 5.381\n",
"The threshold kinetic energy in case-2 in MeV 16.104\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|