1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
{
"metadata": {
"name": "MP-11"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Solid State Physics"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.1 Page 346"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nc=769.0*10**3; Na=6.023*10**23; JeV=1.6*10**-19; #various constants and given values\n\n#calculation\nBe=c/(Na*JeV); #Binding energy of an ion pair in the lattice\n\n#result\nprint\"The experimental value was found out to be in eV.\",round(Be,5);\n\n#partb\nn=9.0;a=1.7476; R=0.281; k= 1.44; #Given values and consstants\nBc=k*a*(1-(1/n))/R; #ionic binding energy eperimentally\n\n#result\nprint\"The calculated value of the binding energy in eV.is\",round(Bc,4);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The experimental value was found out to be in eV. 7.97983\nThe calculated value of the binding energy in eV.is 7.9606\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.2 Page 350"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\na=3.61;# amount of energy required to remove an electron from Cl- ion\nb=-5.14 #amount of energy returned when an electron is added to Na+ ion\\\nc=7.98 #binding energy of NaCl atom\n\n#calculation\nE=a+b+c #suom of all the energies\nprint\"The net energy to be supplied in eV is\",round(E,3);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The net energy to be supplied in eV is 6.45\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.3 Page 355"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nfrom math import exp,sqrt\nNa=6.023*10**23; p=8.96*10**3; M=63.5*10**-3; #Na=avagadro's number,p=density,M=molar mass\n\n#calculation\nn= p*Na/M; #density of charge carriers\n\n#result'\nprint\"The density of charge carriers in copper in atoms/m3 is %.1e\" %round(n,3);\n\ns=5.88*10**7;m=9.11*10**-31;e=1.6*10**-19; #charge & mass of an electron,resistance per unit length\nt= s*m/(n*e**2); #average time between collisions\n\n#result\nprint \"The average time between collisions of conducting electrons in sec.is %.1e\" %t\n\n#partb\nEf=7.03*1.6*10**-19; #converting given enrgy to J\n\n#calculation\nVf=sqrt(2*Ef/m); #fermi velocity\nl=Vf*t; #mean free path\n\n#result\nprint \"The average mean free path is\",l,\"m =\",round(l*10**9,3),\" nm\"\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The density of charge carriers in copper in atoms/m3 is 8.5e+28\nThe average time between collisions of conducting electrons in sec.is 2.5e-14\nThe average mean free path is 3.8690296096e-08 m = 38.69 nm\n"
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|