summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter11.ipynb
blob: 8b1cca27d0f06e559b42f029feb9ef449716512d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
{
 "metadata": {
  "name": "Chapter11"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 11:Solid State Physics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.1, Page 346"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "c=769.0*10**3; Na=6.023*10**23; JeV=1.6*10**-19; #various constants and given values\n",
      "\n",
      "#calculation\n",
      "Be=c/(Na*JeV);        #Binding energy of an ion pair in the lattice\n",
      "\n",
      "#result\n",
      "print\"The experimental value was found out to be in eV.\",round(Be,5);\n",
      "\n",
      "#partb\n",
      "n=9.0;a=1.7476; R=0.281; k= 1.44;     #Given values and consstants\n",
      "Bc=k*a*(1-(1/n))/R;                  #ionic binding energy experimentally\n",
      "\n",
      "#result\n",
      "print\"The calculated value of the binding energy in eV.is\",round(Bc,4);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The experimental value was found out to be in eV. 7.97983\n",
        "The calculated value of the binding energy in eV.is 7.9606\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.2, Page 350"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "a=3.61;# amount of energy required to remove an electron from Cl- ion\n",
      "b=-5.14 #amount of energy returned when an electron is added to Na+ ion\\\n",
      "c=7.98 #binding energy of NaCl atom\n",
      "\n",
      "#calculation\n",
      "E=a+b+c  #sum of all the energies\n",
      "print\"The net energy to be supplied in eV is\",round(E,3);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net energy to be supplied in eV is 6.45\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.3, Page 355"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initiation of variable\n",
      "from math import exp,sqrt\n",
      "Na=6.023*10**23; p=8.96*10**3; M=63.5*10**-3;   #Na=avagadro's number,p=density,M=molar mass\n",
      "\n",
      "#calculation\n",
      "n= p*Na/M;                                   #density of charge carriers\n",
      "\n",
      "#result'\n",
      "print\"The density of charge carriers in copper in atoms/m3 is %.1e\" %round(n,3);\n",
      "\n",
      "s=5.88*10**7;m=9.11*10**-31;e=1.6*10**-19;    #charge & mass of an electron,resistance per unit length\n",
      "t= s*m/(n*e**2);                            #average time between collisions\n",
      "\n",
      "#result\n",
      "print \"The average time between collisions of conducting electrons in sec.is %.1e\" %t\n",
      "\n",
      "#partb\n",
      "Ef=7.03*1.6*10**-19;           #converting given enrgy to J\n",
      "\n",
      "#calculation\n",
      "Vf=sqrt(2*Ef/m);               #fermi velocity\n",
      "l=Vf*t;                      #mean free path\n",
      "\n",
      "#result\n",
      "print \"The average mean free path is\",l,\"m =\",round(l*10**9,3),\" nm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The density of charge carriers in copper in atoms/m3 is 8.5e+28\n",
        "The average time between collisions of conducting electrons in sec.is 2.5e-14\n",
        "The average mean free path is 3.8690296096e-08 m = 38.69  nm\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}