1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Statistical Physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2 Page 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sqrt\n",
"#The solution is purely theoretical and involves a lot of approximations.\n",
"print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n",
"T=6000.0; #temperature for sun\n",
"delf=7.14*10**-7*sqrt(T);#change in frequency\n",
"\n",
"#result\n",
"print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n",
"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3 Page 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import sqrt,pi, exp, log\n",
"kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n",
"\n",
"#calculation\n",
"n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n",
"t=(g2/g1)*exp(-E/kT); #fraction of atoms\n",
"\n",
"#result\n",
"print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.1e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n",
"\n",
"#partb\n",
"t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n",
"T=-E/(log(t/(g2/g1))*k); #temperature\n",
"\n",
"#result\n",
"print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of hydrogen atoms required is 1.5e+175 which weighs 2.5e+148 Kg\n",
"The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4 Page 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import log\n",
"#theoritical part a\n",
"print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n",
"#partb\n",
"uB=5.79*10**-4; #for a typical atom\n",
"t=1.1;k=8.65*10**-5; #ratio and constant k\n",
"\n",
"#calculation\n",
"T=2*uB/(log(t)*k); #temperature\n",
"\n",
"#result\n",
"print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n",
"The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n",
"The value of temperature ar which the given ratio exists in K is 140.46\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.5 Page 313"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initiation of variable\n",
"from math import pi\n",
"p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n",
"\n",
"#calculation\n",
"c= (p*A/m)*10**6; # atoms per unit volume\n",
"hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n",
"E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n",
"\n",
"#result\n",
"print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fermi energy for sodium is 3.1539 eV\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|