summaryrefslogtreecommitdiff
path: root/Modern_Electronics_Communication/chapter18.ipynb
blob: fee42ea4f93d61684888af59b417440d8d1487a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 18 Fibre Optics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.1 Page no 859"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "c=3*10**8          #velocity of light\n",
      "f=4.4*10**14       #frequency of red light\n",
      "f1=7.0*10**14     #frequency of violet light\n",
      "\n",
      "#calculation\n",
      "h1=c/f             #wavelength of red light\n",
      "h2=c/f1            #wavelength of violet light\n",
      "\n",
      "#result\n",
      "print\"wavelenght for red= \",round(h1,9),\"m\"\n",
      "print\"wavelngth for violet= \",round(h2,8),\"micron\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelenght for red=  6.82e-07 m\n",
        "wavelngth for violet=  4.3e-07 micron\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.2 Page no 862"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "n1=1.535             #refractive index of fibre optics\n",
      "n2=1.490             #refractive index of cladding\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "x=(n1**2)-(n2**2)\n",
      "y=math.sqrt(x)     #numerical aperture\n",
      "z=math.asin(y)*180/3.14      #theta\n",
      "\n",
      "#result\n",
      "print\"NA = \",round(y,3)\n",
      "print\"(theta)in(max) = \",round(z,1),\"degree\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "NA =  0.369\n",
        "(theta)in(max) =  21.7 degree\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.3 Page no 868"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "w=22                  #spectral width of LED\n",
      "l=2                   #length of fibre\n",
      "d=95                  #dispersion value\n",
      "p=d*w                 #pulse dispersion\n",
      "pt=p*l                #total pulse dispersion\n",
      "\n",
      "#result\n",
      "print\"pulse dispersion = \",p,\"ps/km\"\n",
      "print\"total pulse dispersion = \",pt,\"ps/km\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "pulse dispersion =  2090 ps/km\n",
        "total pulse dispersion =  4180 ps/km\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.4 Page no 885"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d=30                 #length of fibre cable\n",
      "l=0.4                #loss\n",
      "\n",
      "#calculation\n",
      "T=d*l                #total cable loss\n",
      "\n",
      "#result\n",
      "print\"total cable loss = \",T,\"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "total cable loss =  12.0 dB\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.5 Page no 887"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "b=565                      #Line bit rate of fibre 1\n",
      "c=3.5                      #Cable dispersion of fibre 1\n",
      "t=4                        #Transmitter spectral width of fibre 1\n",
      "b1=1130                    #Line bit rate of fibre 2\n",
      "c1=3.5                     #Cable dispersion of fibre 2\n",
      "t1=2                       #Transmitter spectral width of fibre 2\n",
      "x=440000                   #assumed gaussian constant \n",
      "\n",
      "#calculation\n",
      "L1=x/(b*c*t)               #span length in km of fibre 1\n",
      "L2=x/(b1*c1*t1)            #span length in km of fibre 2\n",
      "\n",
      "#result \n",
      "print\"span lenght of fibre 1= \",round(L1,2),\"Km\"\n",
      "print\"span lenght of fibre 2= \",round(L2,2),\"Km\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "span lenght of fibre 1=  55.63 Km\n",
        "span lenght of fibre 2=  55.63 Km\n"
       ]
      }
     ],
     "prompt_number": 20
    }
   ],
   "metadata": {}
  }
 ]
}