1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 Antennas"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1 Page no 669"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"c=3*10**8 #m/s , speed of light \n",
"f=150*10**6 #frequency\n",
"\n",
"#calculation\n",
"h=c/f\n",
"x=1/2.0 #antennas dimension(D)\n",
"D=0.5*2\n",
"Rff=5*D\n",
"h=c/f \n",
"D = h/2\n",
"\n",
"#result\n",
"print\" distance =\",Rff,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" distance = 5.0 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2 Page no 669"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"c=3*10**8 #velocity of light\n",
"f=12.0*10**9 #frequency\n",
"D=4.5 #diameter of parabolic reflector\n",
"\n",
"#calculation\n",
"h=c/f #wavelength\n",
"x=D/h\n",
"R=(2*D**2)/h\n",
"\n",
"#result\n",
"print\"distance from parabolic reflector= \",R,\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"distance from parabolic reflector= 1620.0 m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3 Page no 671"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"Pt=10 #transmitted power\n",
"#dipoles have gain 2.15dB \n",
"Gr=1.64\n",
"c=3*10**8 #velocity of light\n",
"f=144.0*10**6 #frequency\n",
"d=50*10**3 #distance between antennas\n",
"Gt=1.64 #recieving antenna gain(ratio) compared to isotropic radiator\n",
"\n",
"#calculation\n",
"import math\n",
"Pr=Pt*Gt*Gr*(c/f)**2/((16*(math.pi)**2)*(d**2)) #power recieved\n",
"\n",
"#result\n",
"print\"Power received = \",round(Pr,12),\"w\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power received = 2.96e-10 w\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4 Page no 674"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"c=3*10**8 #velocity of light\n",
"f=100*10**6 #frequency\n",
"\n",
"#Calculation\n",
"h=c/f #wavelength\n",
"x=h/2.0 #dipole i.e h/2\n",
"l=0.95*x #applying 95% correction,the actual optimum physical length\n",
"L=486/100.0 #alternative method to find length\n",
"\n",
"#Result\n",
"print\"length of antenna = \",l,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"length of antenna = 1.425 m\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|