1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
{
"metadata": {
"name": "",
"signature": "sha256:358c1b86e82f27b9eee799b4793457200c3f930f370a7e7347103331d9245d4d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13 Wave Propagation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.1 Page no 628"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"x=(2*(1/2.0))\n",
"a=15\n",
"d=53.5*10**-6 #duration for each horizontal line on the reciever\n",
"t=1/186000.0 #time delay between direct and reflected signal\n",
"\n",
"#calculation\n",
"g=(t/d)*a #ghost width\n",
"\n",
"#result\n",
"print\"ghost width = \",round(g,2),\"in.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ghost width = 1.51 in.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2 Page no 641"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"S=83 #satellite longitude in degrees\n",
"N=90 #site longitude in degrees\n",
"L=35 #site longitude in degrees\n",
"\n",
"#calculation\n",
"import math\n",
"b=0.1512 #constant in equation\n",
"A=180+math.atan(math.tan(-7*3.14/180)/math.sin(35*3.14/180))*180/3.14 \n",
"E=math.atan((math.cos((S-N)*3.14/180)*math.cos(L*3.14/180)-b)/math.sqrt(1-((math.cos(L*3.14/180))**2*(math.cos((S-N)*3.14/180))**2)))*180/3.14\n",
"\n",
"#Result\n",
"print\"The azimuth is equal to A = \",round(A,0),\"degree\"\n",
"print\"the elevation angle = \",round(E,1),\"degree\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The azimuth is equal to A = 168.0 degree\n",
"the elevation angle = 48.7 degree\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3 Page no 646"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"import math\n",
"x=(32+(44/60.0)+(36/3600.0)) # N latitude\n",
"y=(106+(16/60.0)+(37/3600.0)) #W longitude\n",
"D=42.1642*10**6 #distance from the satellite to the center of the earth\n",
"R=6.378*10**6 #earth's radius\n",
"a=32.74333*3.14/180.0 #in degree\n",
"B=-7.27694*3.14/180.0 #in degree\n",
"\n",
"#calculation\n",
"q=math.cos(a)*math.cos(B)\n",
"\n",
"d=math.sqrt(D**2+R**2-(2*D*R*q))\n",
"c=2.997925*10**5 #velocity of light\n",
"de=d/c\n",
"rd=(2*d)/c\n",
"\n",
"#result\n",
"print\"N longitude converted into degrees = \",round(x,2)\n",
"print\"W longitude coverted into degrees =\",round(y,2)\n",
"print\"distance = \",round(d/1000,1),\"*10**6 meters\"\n",
"print\"delay =\",round(de/1000,3),\"seconds\"\n",
"print\"roundtrip delay = \",round(rd/1000,3),\"seconds\" \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"N longitude converted into degrees = 32.74\n",
"W longitude coverted into degrees = 106.28\n",
"distance = 37009.1 *10**6 meters\n",
"delay = 0.123 seconds\n",
"roundtrip delay = 0.247 seconds\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.4 Page no 651"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"G=45 #antenna gain\n",
"nt=25 #antenna noise temperature\n",
"nt1=70 #LNB noise temperature\n",
"nt2=2 #noise temperature(reciever and passive components)\n",
"\n",
"#calculation\n",
"import math\n",
"T=nt+nt1+nt2 #total noise temperature\n",
"x=G-10*math.log10(T) #figure of merit\n",
"\n",
"#result\n",
"print\"Sum of all of the noise temperature contributions Ts = \",T,\"k\"\n",
"print\"The figure of merit = \",round(x,2),\"dB\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Sum of all of the noise temperature contributions Ts = 97 k\n",
"The figure of merit = 25.13 dB\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.5 Page no 652"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=41.130383*10**6 #dismath.tance\n",
"c=2.997925*10**8 #velocity of light\n",
"f=14.25*10**9 #uplink frequency\n",
"\n",
"#calculation\n",
"import math\n",
"h=c/f #wavelength\n",
"x=(4*math.pi*d)/h\n",
"Lp=20*math.log10(x) #free-space path loss\n",
"\n",
"#result\n",
"print\"The wavelength is= \",round(h,2)\n",
"print\"Lp(dB)= \",round(Lp,2),\"dB\"\n",
"#INcorrect answer of h in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The wavelength is= 0.02\n",
"Lp(dB)= 207.81 dB\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|