1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6 MICROWAVE RESONATORS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.1 page.no:309"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Qair = 2379.5\n",
"Qteflon = 1217.7\n",
"conclusion: Qair is almost twice that of Qteflon\n"
]
}
],
"source": [
"#program to compare the Q of an air filled and teflon filled coaxial line resonator .\n",
"from math import pi,sqrt,log\n",
"\n",
"sigma=5.813*10**7;muo=4*pi*10**-7;f=5*10**9;eta=377;a =1*10**-3;b=4*10**-3;\n",
"omega=2*pi*f;ko=104.7;B=104.7;alpha=0.022;\n",
"Rs=sqrt((omega*muo)/(2*sigma));\n",
"alphaca=(Rs/(2*eta*log(b/a)))*((1/a)+(1/b)); # attenuation due to conductor loss for air filled line .\n",
"eipsilar=2.08;tandelta=0.0004; # for teflon filled line .\n",
"alphact=((Rs*sqrt(2.08)*0.01)/(2*eta*log(b/a)))*((1/ a)+(1/b)); # attenuation due to conductor loss for teflon filled line .\n",
"alphada=0; # for air filled line .\n",
"alphadt=ko*(sqrt(eipsilar)/2)*tandelta;\n",
"Qair=B/(2*alpha);\n",
"B=B*sqrt(eipsilar);\n",
"alpha =0.062;\n",
"Qteflon=B/(2*alpha);\n",
"print \"Qair = %.1f\"%Qair\n",
"print \"Qteflon = %.1f\"%Qteflon\n",
"print \"conclusion: Qair is almost twice that of Qteflon\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.2 page.no:312"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"length of the line in meter = 0.0219\n",
"Q of the resonator = 525.9\n"
]
}
],
"source": [
"# program to compute the length of the line for resonance at 5 GHZ and the Q of the resonator .\n",
"from math import sqrt,pi\n",
"\n",
"W=0.0049;c=3*10**8;f=5*10**9;Zo=50;eipsilar=2.2;ko =104.7;tandelta =0.001;\n",
"Rs=0.0184; # taken from example 7.1.\n",
"eipsilae=1.87; # effective permittivity .\n",
"l=c/(2*f*sqrt(eipsilae)); # resonator length .\n",
"B=(2*pi*f*sqrt(eipsilae))/c;\n",
"alphac=Rs/(Zo*W);\n",
"alphad=(ko*eipsilar*(eipsilae -1)*tandelta)/(2*sqrt(eipsilae)*(eipsilar -1));\n",
"alpha=alphac+alphad;\n",
"Q=B/(2*alpha);\n",
"print \"length of the line in meter = %.4f\"%l\n",
"print \"Q of the resonator = %.1f\"%Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.3 page.no:317"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"d in meter = 0.0465\n",
"Q1 = 1437\n",
"Q2 = 1518\n"
]
}
],
"source": [
"# program to find required length ,d and Q for l=1 and l=2 resonator mode.\n",
"from math import sqrt,pi\n",
"\n",
"a=0.04755;b=0.02215;eipsilar=2.25;tandelta=0.0004;f =5*10**9;c=3*10**8;\n",
"k=(2*pi*f*sqrt(eipsilar))/c # wave number .\n",
"for l in range(1,2):\n",
" d=(l*pi)/sqrt((k**2)-((pi/b)**2)); # m=1 & n=0 mode .\n",
" print \"d in meter = %.4f\"%d\n",
"eta=377/sqrt(eipsilar);\n",
"Qc1=3380.;# l=1.\n",
"Qc2=3864.;# l=2.\n",
"Qd=2500.; # Q due to dielectric loss only .\n",
"Q1=((1./Qc1)+(1./Qd))**-1; # for l =1.\n",
"Q2=((1./Qc2)+(1./Qd))**-1; # for l =2.\n",
"print \"Q1 = %.0f\"%Q1\n",
"print \"Q2 = %.0f\"%Q2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.4 page.no:323"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a in meter = 0.0395\n",
"Qc = 42364.227\n"
]
}
],
"source": [
"# program to find dimension and Q;\n",
"from math import pi,sqrt\n",
"\n",
"f=5.*10**9;c=3.*10**8;p01=3.832;sigma=5.813*10**7;muo=4.*pi*10** -7;\n",
"eipsilar =2.25;\n",
"# mode TE011 . and d=2a .\n",
"omega=2*pi*f;\n",
"eta =377.;\n",
"lamda=c/f;\n",
"k=(2.*pi)/lamda;\n",
"# f=(c/(2⇤pi))⇤sqrt((p01/a)ˆ2+(%pi/(2⇤a))ˆ2); as d=2a given\n",
"a=sqrt((p01)**2+(pi/2)**2)/k;\n",
"Rs=sqrt((omega*muo)/(2.*sigma))\n",
"Qc=(k*a*eta)/(2.*Rs); # for m=l =1,n=0 and d=2a .\n",
"print \"a in meter = %.4f\"%a\n",
"print \"Qc = %.3f\"%Qc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.5 page.no:309"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"f1 in GHZ= 2.853\n",
"f2 in GHZ= 27.804\n",
"approx. value of Q due to dielectric loss = 1000\n"
]
}
],
"source": [
"# program to find the resonant frequency and Q for TE01delta mode .\n",
"from math import sqrt,pi,tan\n",
"\n",
"delta=0.001;eipsilar=95.;a=0.413;L=0.008255;c=3.*10**8;\n",
"#tan((B⇤L)/2)=alpha/beta.\n",
"ko=2.405\n",
"alpha=(sqrt((2.405/a)**2-(ko)**2));\n",
"B=sqrt((eipsilar*(ko)**2) -(2.405/a)**2); # beta\n",
"f1=((c*2.405)/(2*pi*sqrt(eipsilar)*a))*10**-7;\n",
"f2=((c*2.405)/(2*pi*a))*10**-7;\n",
"print \"f1 in GHZ= %.3f\"%f1\n",
"print \"f2 in GHZ= %.3f\"%f2\n",
"Q=1/tan(delta);\n",
"print \"approx. value of Q due to dielectric loss = %.0f\"%Q"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example:6.6 page.no:336"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"coupling capacitor in pF = 433773.991\n",
"frequency in GHZ= 3.66602230334e-07\n"
]
}
],
"source": [
"# program to find the value of the coupling capacitor required for critical coupling .\n",
"from math import pi,sqrt,atan\n",
"\n",
"l=0.02175;Zo=50;eipsilae=1.9;c=3*10^8;\n",
"fo=c/(2*l*sqrt(eipsilae)); # first resonant frequency will occur when the resonator ia about l=lamdag/2 in length .\n",
"lamdag=c/fo;\n",
"alpha=1/8.7; # in Np/m.\n",
"Q=pi/(2*l*alpha);\n",
"bc=sqrt(pi/(2*Q));\n",
"C=bc/(2*pi*fo*Zo)*10**12;\n",
"print \"coupling capacitor in pF = \",C\n",
"C=bc/(2*pi*fo*Zo);\n",
"w1=atan(2*pi*fo*C*Zo)*c/(l*sqrt(eipsilae)); # from equation tan (B⇤l) =bc ;\n",
"w1=w1*10**-8;\n",
"print \"frequency in GHZ= \",w1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.7 page.no:342"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"on taking sin (2⇤pi )=0 ,w becomes= A**2*a*c*d*t/4\n",
"fractional change in resonant frequency= 2*(-A**2*a*b*d*eo/2 + A**2*a*c*d*t/4)/(A**2*a*b*d*eo)\n"
]
}
],
"source": [
"# program to derive an expression for the change in resonant frequency .\n",
"from sympy import symbols,sin,cos,integrate,limit\n",
"from math import pi\n",
"\n",
"Ey,Hx,Hz,A,Zte,n,a,p,i,x,z,d,j,k,t,y,er,eo,c,wo,w,b=symbols('Ey,Hx,Hz,A,Zte,n,a,p,i,x,z,d,j,k,t,y,er,eo,c,wo,w,b')\n",
"Ey=A*sin((pi*x)/a)*sin((pi*z)/d);\n",
"Hx=((-j*A)/Zte)*sin((pi*x)/a)*cos((pi*z)/d);\n",
"Hz=((j*pi*A)/(k*n*a))*cos((pi*x)/a)*sin((pi*z)/d); \n",
"Ey=Ey**2; #c=(er1)⇤eo;\n",
"w=c*integrate(integrate(integrate(Ey,(z,0,d)),(y,0,t)),(x,0,a));\n",
"# as sin (2⇤ pi )=0; then last term of above result will be:\n",
"w=(c*A**2*a*t*d)/4;\n",
"print \"on taking sin (2⇤pi )=0 ,w becomes= \",w\n",
"wo=((a*b*d*eo)/2)*A**2;\n",
"deltaw=(w-wo)/wo;\n",
"print \"fractional change in resonant frequency= \",deltaw"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|