summaryrefslogtreecommitdiff
path: root/Microwave_and_Radar_Engineering_by_M._Kulkarni/chapter10.ipynb
blob: c3f955b3cf4dd099d7e76196178a0de3d665a67f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
{
 "metadata": {
  "name": "",
  "signature": "sha256:e0413e9c9e3050091f310d4afb4ca2e525621132a18cab203347bc4619b6cd5d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "chapter10:Microwave Communication Systems"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1, Page number 486"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate radio horizon and the maximum distance of propagation of the TV signal\n",
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "ht = 144      #transmitter antenna height(m)\n",
      "hr = 25       #receiving antenna height(M)\n",
      "\n",
      "#Calculations\n",
      "dt = 4*sqrt(ht)\n",
      "dr = 4*sqrt(hr)\n",
      "d = dt+dr\n",
      "\n",
      "#Results\n",
      "print \"Radio horizon is\",dt,\"km\"\n",
      "print \"The maximum distance of propagation of the TV signal is\",d,\"km\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Radio horizon is 48.0 km\n",
        "The maximum distance of propagation of the TV signal is 68.0 km\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2, Page number 486"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate horizon distance of the transmitter\n",
      "from fractions import Fraction\n",
      "\n",
      "#Variable declaration\n",
      "r = 6370*10**3          #radius of earth(km)\n",
      "du_dh = -0.05*10**-6    #refractive index of air near ground\n",
      "\n",
      "#Calculations\n",
      "k = 1/(1+(r*du_dh))\n",
      "\n",
      "#Result\n",
      "print \"The horizon distance of the transmitter can be modified by replaing r by r' is\",round(k,3),\"r\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The horizon distance of the transmitter can be modified by replaing r by r' is 1.467 r\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3, Page number 487"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate carrier tansmitted power required\n",
      "import math \n",
      "#Variable declaration\n",
      "c = 3.*10**8       #velocity of propagation(m/s)\n",
      "f = 2*10**9       #frequency(Hz)\n",
      "r = 50*10**3      #repeater spacing(km)\n",
      "Pr = 20           #carrier power(dBm)\n",
      "Gt = 34           #antenna gain(dB)\n",
      "L = 10            #dB\n",
      "Gr = 34           #dB\n",
      "\n",
      "#Calculations\n",
      "lamda = c/f\n",
      "Pt = -Pr+(10*math.log10(4*math.pi*r**2))-Gt-(10*math.log10(lamda**2/(4*math.pi)))+L-Gr\n",
      "\n",
      "#Results\n",
      "print \"The carrier tansmitted power required is\",round(Pt,1),\"dBm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The carrier tansmitted power required is 54.4 dBm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4, Page number 487"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate Received power\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f = 6.*10**9     #uplink frequency(Hz)\n",
      "e = 5            #elevation angle(degrees)\n",
      "Pt = 1.*10**3     #transmitter power(W)\n",
      "Gt = 60.         #gain of transmitter(dB)\n",
      "Gr = 0           #gain of receiver(dB)\n",
      "d = 36000*10**3  #distance between ground and satellite(m)\n",
      "c = 3.*10**8     #velocity of propagation(m/s)\n",
      "\n",
      "#Calculation\n",
      "Gt1 = 10**(Gt/10)\n",
      "Gr1 = 10.**(Gr/10)\n",
      "r = d/(math.sin(math.radians(e)))\n",
      "lamda = c/f\n",
      "Pr = (Pt*Gt1*Gr1*lamda**2)/(4*math.pi*r**2*4*math.pi)\n",
      "\n",
      "#Result\n",
      "print \"Received power =\",round((Pr/1E-14),1),\"*10^-14 W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Received power = 9.3 *10^-14 W\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5, Page number 487"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate Antenna beam angle\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "r = 6371           #radius of the earth(km)\n",
      "\n",
      "#Calculation\n",
      "d = 35855+r        #distance of satellite from center of the earth(km)\n",
      "b = (math.degrees(math.pi)*r)/d\n",
      "\n",
      "#Result\n",
      "print \"Antenna beam angle =\",round(b,2),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Antenna beam angle = 27.16 degrees\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.6, Page number 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate round trip time between earth station and satellite,round trip time for vertical transmission\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "r = 6371         #radius of earth(km)\n",
      "h = 35855        #height(km) \n",
      "phi = 5          #elevation angle(degrees)\n",
      "c = 3*10**8      #velocity of propagation(m/s)\n",
      "B = 90           #angle for vertical transmission(degrees)\n",
      "\n",
      "#Calculations\n",
      "d = math.sqrt(((r+h)**2)-((r*math.cos(math.radians(phi)))**2))- (r*math.sin(math.radians(phi)))\n",
      "T = (2*d*10**3)/c\n",
      "dv = math.sqrt(((r+h)**2)-(r**2))\n",
      "Tv = (2*(dv-r)*10**3)/c\n",
      "\n",
      "#Results\n",
      "print \"The round trip time between earth station and satellite is\",round((T/1E-3)),\"msec\"\n",
      "print \"The round trip time for vertical transmission is\",round((Tv/1E-3)),\"msec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The round trip time between earth station and satellite is 275.0 msec\n",
        "The round trip time for vertical transmission is 236.0 msec\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.7, Page number 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate figure of merit for earth station\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "Tant = 25      #effective noise temperature for antenna(K)\n",
      "Tr = 75        #receiver oise temperature(K)\n",
      "G = 45         #power gain(dB)\n",
      "\n",
      "#Calculations\n",
      "T = Tant+Tr\n",
      "Tdb = 10*math.log10(T)\n",
      "M = G - Tdb\n",
      "\n",
      "#Results\n",
      "print \"The figure of merit for earth station is\",M,\"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The figure of merit for earth station is 25.0 dB\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.8, Page number 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate carrier to noise ratio\n",
      "#Variable declaration\n",
      "EIRP = 55.5   #satellite ESM(dBW)\n",
      "M = 35        #freespace loss(dB)\n",
      "Lfs = 245.3   #GT of earth station(dB)\n",
      "\n",
      "#Calculation\n",
      "C_No = EIRP + M - Lfs + 228.6\n",
      "\n",
      "#Result\n",
      "print \"The carrier to noise ratio is\",round(C_No,2),\"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The carrier to noise ratio is 73.8 dB\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.9, Page number 489"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate system noise temperature\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "D = 30         #diameter of dish(m)\n",
      "f = 4*10**9    #downlink frequency(Hz)\n",
      "M = 20         #G/T ratio of earth station\n",
      "c = 3.*10**8    #velocity of propagation(m/s)\n",
      "\n",
      "#Calculations\n",
      "Ae = (math.pi*D**2)/4\n",
      "lamda = c/f\n",
      "G = (4*math.pi*Ae)/lamda**2\n",
      "Gdb = 10*math.log10(G)\n",
      "Ts = Gdb - M\n",
      "\n",
      "#Result\n",
      "print \"The system noise temperature is\",round(Ts),\"dB\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The system noise temperature is 42.0 dB\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10, Page number 489"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-10 page 489 example 10.10\n",
      "#calculate Diameter of the circular mouth of a parabolic antenna, Half Power BeamWidth of the antenna\n",
      "#For a parabolic antenna\n",
      "import math\n",
      "Gp=1500.;#Power gain\n",
      "w=0.1;#wavelength in m\n",
      "\n",
      "#CALCULATION\n",
      "D=math.sqrt(Gp)*(w/(math.pi));#Diameter of the circular mouth of a parabolic antenna in m\n",
      "HPBW=58*(w/D);#Half Power BeamWidth of the antenna in deg\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.4f %s %s %.3f %s'%('\\nDiameter of the circular mouth of a parabolic antenna is D=',D,'m','\\nHalf Power BeamWidth of the antenna is HPBW=',HPBW,'deg');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Diameter of the circular mouth of a parabolic antenna is D= 1.2328 m \n",
        "Half Power BeamWidth of the antenna is HPBW= 4.705 deg\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.11, Page number 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-10 page 490 example 10.11\n",
      "#calculate Overall gain that can be expected, Overall gain of the system\n",
      "import math\n",
      "D=1.;#Assume diameter of the parabolic reflectors in the original system in m\n",
      "w=1.;#Assume wavelength in m\n",
      "\n",
      "#CALCULATION\n",
      "D1=2.*D;#diameter of the parabolic reflectors in the modified system in m\n",
      "G=6.*(D/w)**2.;#gain in original system\n",
      "G1=6.*(D1/w)**2.;#gain in modified system\n",
      "GdB=10.*math.log10(G1/G);#Overall gain that can be expected in dB\n",
      "GdBo=2.*GdB;#Overall gain of the system(combining the two antennas one at the Tx and other at the Rx) in dB\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.f %s %s %.f %s' %('\\nOverall gain that can be expected is GdB=',GdB,'dB', '\\nOverall gain of the system(combining the two antennas one at the Tx and other at the Rx) is GdBo=',GdBo,'dB');\n",
      "\n",
      "#Note: Check the answer once ..it should be GdB=10log(4)=6 dB and GdBo=12dB\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Overall gain that can be expected is GdB= 6 dB \n",
        "Overall gain of the system(combining the two antennas one at the Tx and other at the Rx) is GdBo= 12 dB\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.12, Page number 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-10 page 490 example 10.12\n",
      "#calculate a)beamwidth between first nulls\n",
      "#calculate b)beamwidth between half power points\n",
      "\n",
      "\n",
      "D=3.##dimension of a paraboloid in m\n",
      "f=3.*10.**9.##frequency (S band) in Hz\n",
      "c=3.*10.**8.##Velocity of light in m/sec\n",
      "\n",
      "#CALCULATION\n",
      "w=c/f##wave length in m\n",
      "BWFN=140.*(w/D)##BeamWidth between First Nulls in deg\n",
      "BWHP=70.*(w/D)##BeamWidth between HalfPower points in deg\n",
      "G=6.*(D/w)**2.##Gain of the antenna \n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.2f %s %s %.2f %s %s %.f' %('BeamWidth between First Nulls is BWFN=',BWFN,'deg','\\nBeamWidth between HalfPower points is BWHP=',BWHP,'deg','\\nGain of the Antenna is G=',G)#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "BeamWidth between First Nulls is BWFN= 4.67 deg \n",
        "BeamWidth between HalfPower points is BWHP= 2.33 deg \n",
        "Gain of the Antenna is G= 5400\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.13, Page number 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate power gain of optimum horn antenna\n",
      "#Variable declaration\n",
      "A = 5\n",
      "\n",
      "#Calculation\n",
      "Gp = 4.5*A**2\n",
      "\n",
      "#Result\n",
      "print \"Power gain of optimum horn antenna =\",Gp\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power gain of optimum horn antenna = 112.5\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}