1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
{
"metadata": {
"name": "",
"signature": "sha256:700ab6262dd3fd322aa3ece04f53175fb8f709a487cc0649654e8878a7afd58c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"chapter09:Solid State Microwave devices"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1, Page number 411"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Frequncy of IMPATT diode\n",
"#Variable declaration\n",
"L = 2*10**-6 #drift length(m)\n",
"Vd = 10**7*10**-2 #dfrift velocit(m/s)\n",
"\n",
"#Calculations\n",
"f = Vd/(2*L)\n",
"\n",
"#Results\n",
"print \"Frequncy of IMPATT diode is\",round((f/1E+9),2),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequncy of IMPATT diode is 25.0 GHz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2, Page number 411"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate threshold electric field\n",
"#Variable declaration\n",
"f = 10*10**9 #operating frequency(Hz)\n",
"L = 75*10**-6 #device length(m)\n",
"V = 25. #voltage pulse amplified(V)\n",
"\n",
"#Calculations\n",
"Eth = V/(L)\n",
"\n",
"#Result\n",
"print \"The threshold electric field is\",round((Eth/1E+5),2),\"KV/cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The threshold electric field is 3.33 KV/cm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3, Page number 411"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Power gain,Power gain as USB converter\n",
"#chapter-9 page 411 example 9.3\n",
"import math\n",
"fs=2.*10.**9.;#Signal Frequency in Hz\n",
"fp=12.*10.**9.#Pump Frequency in Hz\n",
"Ri=16.;#O/P resistance of signal generator in ohms\n",
"Rs=1000.;#On types resistance of signal generator in ohms\n",
"\n",
"#CALCULATION\n",
"P=10*math.log10((fp-fs)/fs);#Power gain in dB\n",
"Pusb=10*math.log10((fp+fs)/fs);#Power gain as USB converter in dB\n",
"\n",
"#OUTPUT\n",
"print '%s %.2f %s %s %.2f %s' %('Power gain is P=',P,'dB','\\nPower gain as USB converter is Pusb=',Pusb,'dB')\n",
"\n",
"#Note: Answer given in textbook is wrong Check it once..\n",
"#Correct answers are Power gain is P=6.99 dB \n",
"#Power gain as USB converter is Pusb=8.45 dB \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power gain is P= 6.99 dB \n",
"Power gain as USB converter is Pusb= 8.45 dB\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.4, Page number 411"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Critical voltage ,Breakdown voltage,Breakdown electric field \n",
"#Variable declaration\n",
"Es = 12.5 #relative dielectric constant\n",
"N = 3.2*10**22 #donor concentration(/m**3)\n",
"L = 8*10**-6 #length(m)\n",
"Eo = 8.854*10**-12 #dielectric constant\n",
"q = 1.6*10**-19\n",
"\n",
"#Calculations\n",
"#Part a\n",
"Vc = (q*N*L**2)/(2*Eo*Es)\n",
"\n",
"#Part b\n",
"Vbd = 2*Vc\n",
"\n",
"#Part c\n",
"Ebd = Vbd/L\n",
"\n",
"#Results\n",
"print \"Critical voltage =\",round((Vc/1E+3),2),\"kV\"\n",
"print \"Breakdown voltage =\",round((Vbd/1E+3),2),\"kV\"\n",
"print \"Breakdown electric field =\",round((Ebd/1E+8),2),\"*10**8 V/cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Critical voltage = 1.48 kV\n",
"Breakdown voltage = 2.96 kV\n",
"Breakdown electric field = 3.7 *10**8 V/cm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.5, Page number 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate avalanche zone velocity\n",
"#Variable declaration\n",
"Na = 2.5*10**16 #doping concentration(/cm**3)\n",
"J = 33*10**3 #current density(A/cm**2)\n",
"q = 1.6*10**-19\n",
"\n",
"#Calculations\n",
"Vz = J/(q*Na)\n",
"\n",
"#Results\n",
"print \"The avalanche zone velocity is\",round((Vz/1E+6),2),\"*10**6 cm/s\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The avalanche zone velocity is 8.25 *10**6 cm/s\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6, Page number 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate power gain\n",
"#Variable declaration\n",
"Rd = -25 #negative resistance(Ohms)\n",
"Rl = 50 #load resistance(Ohms)\n",
"\n",
"#Calculations\n",
"G = ((Rd-Rl)/(Rd+Rl))**2\n",
"\n",
"#Results\n",
"print \"Power gain =\",G"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power gain = 9\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.7, Page number 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate minimum voltage required\n",
"#chapter-9 page 412 example 9.7\n",
"#For a Gunn Diode\n",
"L=5.*10.**(-4.);#Drift Length in cm\n",
"Vg=3300.;#Voltage gradient in V/cm [Vg>3.3 kV/cm]\n",
" \n",
"#CALCULATION\n",
"Vmin=Vg*L;#Minimum Voltage needed to initiate Gunn effect in volts\n",
"\n",
"#OUTPUT\n",
"print '%s %.2f %s' %('\\nMinimum Voltage needed to initiate Gunn effect is Vmin=',Vmin,'volts');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Minimum Voltage needed to initiate Gunn effect is Vmin= 1.65 volts\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.8, Page number 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Natural(Rational) Frequency,Critical Voltage of the diode\n",
"#chapter-9 page 412 example 9.8\n",
"#For a Gunn Diode\n",
"L=20.*10.**(-4.);#Active Length in cm\n",
"Vd=2.*10.**7.;#Drift Velocity of Electrons in cm/sec\n",
"Ec=3.3*10.**3.;#Criticl Field for GaAs in V/cm\n",
"\n",
"#CALCULATION\n",
"fn=(Vd/L)/10.**9.;#Natural(Rational) Frequency in GHz\n",
"Vc=L*Ec;#Critical Voltage of the diode in volts\n",
"\n",
"#OUTPUT\n",
"print '%s %.f %s %s %.1f %s ' %('\\nNatural(Rational) Frequency is fn=',fn,'GHz','\\nCritical Voltage of the diode is Vc=',Vc,'volts');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Natural(Rational) Frequency is fn= 10 GHz \n",
"Critical Voltage of the diode is Vc= 6.6 volts \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.9, Page number 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the resonant frequency,Efficiency\n",
"from math import pi,sqrt\n",
"\n",
"#Variable declaration\n",
"Cj = 0.5*10**-12 #capacitance of IMPATT diode(F)\n",
"Lp = 0.5*10**-9 #Inductance of IMPATT diode(H)\n",
"Vbd = 100 #breakdown voltage(V)\n",
"Ib = 100*10**-3 #dc bias current(A)\n",
"Ip = 0.8 #peak current(A)\n",
"Rl = 2 #load resistance(Ohms)\n",
"\n",
"#Calculations\n",
"f = 1/(2*pi*sqrt(Lp*Cj))\n",
"Pl = ((Ip**2)*Rl)/2\n",
"Pdc = Vbd*Ib\n",
"N = (Pl/Pdc)*100\n",
"\n",
"#Results\n",
"print \"The resonant frequency is\",round((f/1E+9)),\"GHz\"\n",
"print \"Efficiency is\",round(N,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resonant frequency is 10.0 GHz\n",
"Efficiency is 6.4 %\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.10, Page number 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Drift time of the carrier,Operating frequency of diode\n",
"\n",
"#Variable declaration\n",
"Vd = 10**5 #carrier dirft velocity(cm/s)\n",
"L = 2*10**-6 #drift length(m)\n",
"\n",
"#Calculations\n",
"#Part a\n",
"tou = L/Vd\n",
"\n",
"#Part b\n",
"f = 1/(2*tou)\n",
"\n",
"#Results\n",
"print \"Drift time of the carrier is\",round((tou/1E-11),2),\"*10**-11 sec\"\n",
"print \"Operating frequency of diode is\",(f/1E+9),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Drift time of the carrier is 2.0 *10**-11 sec\n",
"Operating frequency of diode is 25.0 GHz\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.11, Page number 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Breakdown voltage,Breakdown electric field\n",
"\n",
"#Variable declaration\n",
"Er = 11.8 #relative dielectric constant\n",
"N = 3*10**21 #donor concentration(m^-3)\n",
"L = 6.2*10**-6 #Si length(m)\n",
"q = 1.6*10**-19 #charge of an electron(C)\n",
"Eo = 8.854*10**-12 #dielctric constant\n",
"\n",
"#Calculations\n",
"#Part a\n",
"Vbd = (q*N*L**2)/(Eo*Er)\n",
"\n",
"#Part b\n",
"Ebd = Vbd/L\n",
"\n",
"#Results\n",
"print \"Breakdown voltage =\",round(Vbd,1),\"V\"\n",
"print \"Breakdown electric field =\",round((Ebd/1E+7),2),\"*10**7 V/m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Breakdown voltage = 176.6 V\n",
"Breakdown electric field = 2.85 *10**7 V/m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12, Page number 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Maximum power gain,Noise figure,Bandwidth\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"rQ = 8. #figure of merit\n",
"fo_fs = 8. #ratio of o/p to i/p frequency\n",
"Td = 300. #diode temperatur(K)\n",
"To = 300. #ambient temperature(K)\n",
"r = 0.2\n",
"\n",
"#Calculations\n",
"#Part a\n",
"X = rQ**2/fo_fs\n",
"G = (X/((1+math.sqrt(1+X))**2))*fo_fs\n",
"g = 10*math.log10(G)\n",
"\n",
"#Part b\n",
"F = 1+((2*Td)/To)*((1/rQ)+(1/rQ**2))\n",
"f = 10*math.log10(F)\n",
"\n",
"#Part c\n",
"BW = 2*r*math.sqrt(fo_fs)\n",
"\n",
"#Results\n",
"print \"Maximum power gain =\",round(g,2),\"dB\"\n",
"print \"Noise figure =\",round(f,2),\"dB\"\n",
"print \"Bandwidth =\",round(BW,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum power gain = 6.02 dB\n",
"Noise figure = 1.08 dB\n",
"Bandwidth = 1.13\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.13, Page number 414"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate Equivalent noise resistance,Gain,Noise figure,Bandwidth\n",
"#Variable declaration\n",
"import math\n",
"fs = 2*10**9 #signal frequency(Hz)\n",
"fp = 12*10**9 #amplifier frquency(Hz)\n",
"fi = 10*10**9 #input frequency(Hz)\n",
"fd = 5*10**9 #diode frequency(Hz)\n",
"Ri = 1*10**3 #input resistance(Ohms)\n",
"Rg = 1*10**3 #gate resistance(Ohms)\n",
"RTs = 1*10**3 #resistance(Ohms)\n",
"RTi = 1*10**3 #resistance(Ohms)\n",
"r = 0.35 #resistane(Ohms)\n",
"rQ = 10. #figure of merit\n",
"rd = 300 #diode temperature(K)\n",
"C = 0.01*10**-12 #capacitance(F)\n",
"Td = 300\n",
"To = 300\n",
"\n",
"#Calculations\n",
"#Part a\n",
"ws = 2*math.pi*fs\n",
"wi = 2*math.pi*fi\n",
"R = (r**2)/(ws*wi*C**2*RTi)\n",
"a = R/RTs\n",
"\n",
"#Part b\n",
"G = (4*fi*Rg*Ri*a)/(fs*RTs*RTi*(1-a)**2)\n",
"g = 10*math.log10(G)\n",
"\n",
"#Part c\n",
"F = 1+((2*Td)/To)*((1/rQ)+(1/rQ**2))\n",
"f = 10*math.log10(F)\n",
"\n",
"#Part d\n",
"BW = (r/2)*math.sqrt(fd/(fs*G))\n",
"\n",
"#Results\n",
"print \"Equivalent noise resistance =\",round(a,2),\"Ohms\"\n",
"print \"Gain =\",round(g,1),\"dB\"\n",
"print \"Noise figure =\",round(f,2),\"dB\"\n",
"print \"Bandwidth =\",round(BW,3),\"(Calculation error in the textbook)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent noise resistance = 1.55 Ohms\n",
"Gain = 20.1 dB\n",
"Noise figure = 0.86 dB\n",
"Bandwidth = 0.027 (Calculation error in the textbook)\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|