summaryrefslogtreecommitdiff
path: root/Microwave_and_Radar_Engineering_by_M._Kulkarni/chapter04.ipynb
blob: eabf105efb8bf7c3664b01aaf47f583fdb9c3b28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
{
 "metadata": {
  "name": "",
  "signature": "sha256:90a8210af9bbd341fd0161ae92317cb94b49dff94f57602b89ee58a96a935fea"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "chapter04:Microwave Transmission Lines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1, Page number 141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate Inductance per unit lengths,Capacitance per unit lengths,Characteristic Impedance ,Velocity of propagation\n",
      "#chapter-4 page 141 example 4.1\n",
      "import math\n",
      "\n",
      "d=0.0049;#Diameter of inner conductor in met \n",
      "D=0.0110;#Inner Diameter of outer conductor in met\n",
      "er=2.3;#Polyethylene dielectric\n",
      "c=3.*10.**8.;#Velocity of Light in m/sec\n",
      "\n",
      "#CALCULATIONS\n",
      "x=math.log(D/d);\n",
      "L=(2.*10.**(-1.)*x);#Inductance per unit lengths in microH/m\n",
      "C=(55.56*(er/x));#The Capacitance per unit lengths in picoF/m\n",
      "R0=(x*(60./math.sqrt(er)));#The Characteristic Impedance in ohms\n",
      "V=(c/math.sqrt(er))/(10.**8.);#The Velocity of propagation in Km/s\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.2f %s %s %.2f %s %s %.2f %s %s %.3f %s' %('\\nInductance per unit lengths is L=',L,'microH/m' ,'\\nThe Capacitance per unit lengths is C=',C,'picoF/m' ,'\\nThe Characteristic Impedance is R0=',R0,'ohms','\\nThe Velocity of propagation is V=',V,'*10**8 m/s');"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Inductance per unit lengths is L= 0.16 microH/m \n",
        "The Capacitance per unit lengths is C= 158.02 picoF/m \n",
        "The Characteristic Impedance is R0= 31.99 ohms \n",
        "The Velocity of propagation is V= 1.978 *10**8 m/s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2, Page number 142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate Attenuation Constant,Phase Constant ,Phase Velocity,Relative Permittivit,Power Loss\n",
      "#chapter-4 page 142 example 4.2\n",
      "import math\n",
      "R=0.05##Resistance in ohm/m\n",
      "L=0.16173*10.**(-6.)##Inductance per unit lengths in H/m\n",
      "C=0.15802*10.**(-6.)##The Capacitance per unit lengths in F/m\n",
      "V=197814.14##The Velocity of propagation in Km/s\n",
      "l=50.##Length of Coaxial Line in met\n",
      "Pin=480.##Input Power to the System in watts\n",
      "f=3.*10.**9.##Frequency in Hz\n",
      "c=3.*10.**5.##Velocity of Light in Km/sec\n",
      "e0=8.854*10.**(-12.)##Permittivity in free space in F/m\n",
      "\n",
      "#CALCULATIONS\n",
      "Z0=math.sqrt(L/C)#\n",
      "A=(R/(2.*Z0))##Attenuation Constant in NP/m\n",
      "w=(2.*(math.pi)*f)##Angular Frequency in rad/sec\n",
      "B=(w*math.sqrt(L*C))##Phase Constant in rad/m\n",
      "Vp=(1./math.sqrt(L*C))/(10.**3.)##Phase Velocity in Km/s\n",
      "er=(((c/V)**2.)/e0)##Relative Permittivity\n",
      "Pl=(2.*Pin*l)##Power Loss in watts\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.3f %s %s %.2f %s %s %.f %s %s %.f %s %.f %s ' %('\\nAttenuation Constant is A=',A,'NP/m','\\nPhase Constant is B=',B,'rad/m','\\nPhase Velocity is Vp=',Vp,'Km/s','\\nRelative Permittivity is er=',er,'\\nPower Loss is Pl=',Pl,'watts')#"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Attenuation Constant is A= 0.025 NP/m \n",
        "Phase Constant is B= 3013.37 rad/m \n",
        "Phase Velocity is Vp= 6255 Km/s \n",
        "Relative Permittivity is er= 259769600965 \n",
        "Power Loss is Pl= 48000 watts \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3, Page number 142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 142 example 4.3\n",
      "#For an air filled coaxial cable\n",
      "import math\n",
      "f=9.375*10.**9.##operating frequency in Hz\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "print '%s' %('Assuming a ratio of (b/a)=2.3 and (b+a)<(w/pi) to exclude higher order modes and a dominant mode propagating')#\n",
      "a=0.36432##length of coaxial cable in cm\n",
      "x=2.3##ratio of b/a\n",
      " \n",
      "#CALCULATION\n",
      "w0=(c/f)##free space wavelength in cm\n",
      "Pbd=(3600.*(a**2.)*math.log(x))##Breakdown power of a coaxial cable in kW\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.f %s' %('\\nBreakdown power of a coaxial cable is Pbd=',Pbd,'kW')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Assuming a ratio of (b/a)=2.3 and (b+a)<(w/pi) to exclude higher order modes and a dominant mode propagating\n",
        "\n",
        "Breakdown power of a coaxial cable is Pbd= 398 kW\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4, Page number 142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate Characteristic Impedance, Velocity of propagation\n",
      "#chapter-4 page 142 example 4.4\n",
      "import math\n",
      "b=0.3175##Distance between ground planes of strip line in cm\n",
      "d=0.0539##Diameter of circular conductor in cm\n",
      "er=2.32##Dielectric Constant \n",
      "c=3.*10.**8.##Velocity of Light in m/sec\n",
      "\n",
      "#CALCULATION\n",
      "Z0=((60./math.sqrt(er))*math.log((4.*b)/(d*(math.pi))))##Characteristic Impedance in ohms\n",
      "V=(c/math.sqrt(er))/(10.**8.)##The Velocity of propagation in Km/s\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.2f %s %s %.2f %s' %('Characteristic Impedance is Z0=',Z0,'ohms','\\nThe Velocity of propagation is  V =',V,'*10**8 m/s')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Characteristic Impedance is Z0= 79.37 ohms \n",
        "The Velocity of propagation is  V = 1.97 *10**8 m/s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5, Page number 143"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 143 example 4.5\n",
      "import math\n",
      "#For a microstrip transmission line \n",
      "er=9.7##relative dielectric constant of an alumina substrate \n",
      "x1=0.5##w/h ratio in first transmission line \n",
      "x2=5##w/h ratio in second transmission line \n",
      "c=3.*10.**8.##Velocity of Light in m/sec\n",
      "\n",
      "#CALCULATION\n",
      "print '%s' %('For case1: w/h=0.5')#\n",
      "print '%s' %('Since x1=0.5<1, for this we use high impedance analysis')#\n",
      "Eeff1=(((er+1.)/2.)+((er-1.)/2.)*(1./((math.sqrt(1.+(12./x1)))+(0.04*(1.-x1)**2.))))##Effective dielectric constant\n",
      "Zo1=((60./math.sqrt(Eeff1))*math.log((8./x1)+(x1/4.)))##Characteristic impedance in ohms\n",
      "V1=(c/math.sqrt(Eeff1))/10.**8.##Velocity of propagation in 10**8 m/sec\n",
      "print '%s %.2f %s %.2f %s %s %.1f %s ' %('\\nEffective dielectric constant is Eeff1  =',Eeff1,'\\nCharacteristic impedance is Zo1 =',Zo1,'ohms','\\nVelocity of propagation is V1 =',V1 ,'*10**8 m/sec')#\n",
      "\n",
      "print '%s' %('\\nFor case2: w/h=5')#\n",
      "print '%s' %('here x2>1')#\n",
      "Eeff2=(((er+1)/2)+((er-1)/2)*(1/(math.sqrt(1+(12/x2)))))##Effective dielectric constant\n",
      "Zo2=((120*(math.pi)/math.sqrt(Eeff2))*(1/(x2+1.393+(0.667*math.log(1.444+x2)))))##Characteristic impedance in ohms\n",
      "V2=(c/math.sqrt(Eeff2))/10**8##Velocity of propagation in 10**8 m/sec\n",
      "print '%s %.2f %s %.2f %s %s %.2f %s' %('\\nEffective dielectric constant is Eeff2 =',Eeff2,'\\nCharacteristic impedance is Zo2 =',Zo2,'ohms' ,'\\nVelocity of propagation is V2 =',V2,'*10**8 m/sec')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For case1: w/h=0.5\n",
        "Since x1=0.5<1, for this we use high impedance analysis\n",
        "\n",
        "Effective dielectric constant is Eeff1  = 6.22 \n",
        "Characteristic impedance is Zo1 = 66.90 ohms \n",
        "Velocity of propagation is V1 = 1.2 *10**8 m/sec \n",
        "\n",
        "For case2: w/h=5\n",
        "here x2>1\n",
        "\n",
        "Effective dielectric constant is Eeff2 = 7.86 \n",
        "Characteristic impedance is Zo2 = 17.61 ohms \n",
        "Velocity of propagation is V2 = 1.07 *10**8 m/sec\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6, Page number 144"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Ratio of area of circular to area of rectangular waveguide in case a and case b\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "a1 = 1.70645        #for case a\n",
      "b1 = a1/2           #for case a\n",
      "b2 = 1.4621         #for case b\n",
      "\n",
      "#Calculations\n",
      "#Case a(For TE10 mode)\n",
      "Area_rw1 = a1*b1\n",
      "Area_cw1 = math.pi\n",
      "Ratio1 = Area_cw1/Area_rw1\n",
      "\n",
      "#Case b(For TM mode)\n",
      "Area_rw2 = b2**2\n",
      "Area_cw2 = math.pi\n",
      "Ratio2 = Area_cw2/Area_rw2\n",
      "\n",
      "\n",
      "#Results\n",
      "print \"Case a\"\n",
      "print \"Ratio of area of circular to area of rectangular waveguide =\",round(Ratio1,1),\"\\n\"\n",
      "print \"Case b\"\n",
      "print \"Ratio of area of circular to area of rectangular waveguide =\",round(Ratio2,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Case a\n",
        "Ratio of area of circular to area of rectangular waveguide = 2.2 \n",
        "\n",
        "Case b\n",
        "Ratio of area of circular to area of rectangular waveguide = 1.5\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7, Page number 146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate breadth of rectangular waveguide\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f = 9.*10**9   #frequency(Hz)\n",
      "lamda_g = 4.   #guide wavelength(cm)\n",
      "c = 3.*10**10  #velocity of propagation(cm/s)\n",
      "\n",
      "#Calculations\n",
      "lamda_o = c/f\n",
      "lamda_c = math.sqrt((lamda_o**2)/(1-(lamda_o**2/lamda_g**2)))\n",
      "#For TE10 mode,\n",
      "a = lamda_c/2\n",
      "b = lamda_c/4  #@since a=2b\n",
      "#Results\n",
      "print \"The breadth of rectangular waveguide is\",round(b,1),\"cms\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The breadth of rectangular waveguide is 1.5 cms\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8, Page number 147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate cut-off wavelength,guided wavelength,pahse velocity,group velocity\n",
      "#Variable declaration\n",
      "a = 10          #breadth of waveguide(cms)\n",
      "f = 2.5*10**9   #frequency of signal(Hz)\n",
      "c = 3*10**10     #velocity of propagation(cm/s)\n",
      "\n",
      "#Calculations\n",
      "lamda_c = 2*a   #cut-off wavelength\n",
      "lamda_o = c/f   \n",
      "x = math.sqrt(1-((lamda_o/lamda_c)**2))\n",
      "lamda_g = (lamda_o/x) #guided wavelength\n",
      "Vp = c/x             #Phase velocity\n",
      "Vg = c**2/Vp          #Group velocity\n",
      "\n",
      "#Results\n",
      "print \"The cut-off wavelength is\", round(lamda_c),\"cm\"\n",
      "print \"The guided wavelength is\",round(lamda_g),\"cm\"\n",
      "print \"The pahse velocity is\",round((Vp/1E+10),2),\"*10^10 cm/sec\"\n",
      "print \"The group velocity is\",round((Vg/1E+10),2),\"*10^10 cm/sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The cut-off wavelength is 20.0 cm\n",
        "The guided wavelength is 15.0 cm\n",
        "The pahse velocity is 3.75 *10^10 cm/sec\n",
        "The group velocity is 2.4 *10^10 cm/sec\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.9, Page number 147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 147 example 4.9\n",
      "import math\n",
      "\n",
      "f=8.6*10.**9.##frequency in Hz\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "a=2.5##Length of a Waveguide in cm\n",
      "b=1.##Width of a Waveguide in cm\n",
      "\n",
      "#CALCULATION\n",
      "print '%s' %('The condition for the wave to propagate along a guide is that wc>w0.')#\n",
      "w0=c/f##free space wavelength in cm\n",
      "print '%s %.3f' %('\\nFree space wavelength w0 in cm is =',w0)#\n",
      "print '%s' %('\\nFor TE waves, wc=(2ab/sqrt((mb)**2+(na)**2))')#\n",
      "print '%s ' %('For TE01 waves')#\n",
      "m1=0#\n",
      "n1=1.#\n",
      "wc1=((2.*a*b)/(math.sqrt((m1*b)**2+(n1*a)**2)))##Cutoff wavelength for TE01 mode in cm\n",
      "print '%s %.f' %('\\nCutoff wavelength for TE01 mode in cm is =',wc1)#\n",
      "print '%s' %('\\nSince wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.')#\n",
      "print '%s' %('For TE10 waves')#\n",
      "m2=1.#\n",
      "n2=0#\n",
      "wc2=((2.*a*b)/(math.sqrt((m2*b)**2.+(n2*a)**2.)))##Cutoff wavelength for TE10 mode in cm\n",
      "print '%s %.f' %('\\nCutoff wavelength for TE10 mode in cm is =',wc2)#\n",
      "print '%s' %('\\nSince wc TE10 > w0 TE10 is a possible mode.')#\n",
      "fc=(c/wc2)/10.**9.##Cutoff frequency in GHz\n",
      "print '%s' %('\\nFor TE11 and TM11 waves')#\n",
      "m3=1.#\n",
      "n3=1.#\n",
      "wc3=((2.*a*b)/(math.sqrt((m3*b)**2.+(n3*a)**2.)))##Cutoff wavelength for TE11 mode in cm\n",
      "print '%s %.3f' %('Cutoff wavelength for TE11 and TM11 modes in cm is =',wc3)#\n",
      "print '%s' %('\\nAs wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.')#\n",
      "wg=(w0/math.sqrt(1-(w0/wc2)**2))##Guide wavelength in cm\n",
      "print '%s' %('\\nFrom the above analysis we conclude that only TE10 mode is possible')#\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.f %s %s %.3f %s' %('\\nCutoff frequency is fc=',fc,'GHz','\\nGuide wavelength is wg=',wg,'cm')#"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The condition for the wave to propagate along a guide is that wc>w0.\n",
        "\n",
        "Free space wavelength w0 in cm is = 3.488\n",
        "\n",
        "For TE waves, wc=(2ab/sqrt((mb)**2+(na)**2))\n",
        "For TE01 waves \n",
        "\n",
        "Cutoff wavelength for TE01 mode in cm is = 2\n",
        "\n",
        "Since wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.\n",
        "For TE10 waves\n",
        "\n",
        "Cutoff wavelength for TE10 mode in cm is = 5\n",
        "\n",
        "Since wc TE10 > w0 TE10 is a possible mode.\n",
        "\n",
        "For TE11 and TM11 waves\n",
        "Cutoff wavelength for TE11 and TM11 modes in cm is = 1.857\n",
        "\n",
        "As wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.\n",
        "\n",
        "From the above analysis we conclude that only TE10 mode is possible\n",
        "\n",
        "Cutoff frequency is fc= 6 GHz \n",
        "Guide wavelength is wg= 4.869 cm\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.10, Page number 148"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate required cross sectional area\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda_c = 10           #cut-off wavelength(cms)\n",
      "c = 3*10**10           #velocity of propagation\n",
      "\n",
      "#Calculations\n",
      "#For TE11 mode in a circular waveguide,\n",
      "r = (lamda_c*1.841)/(2*math.pi)      #radius of circular waveguide(cms)\n",
      "a = math.pi*r**2                   #area of circular waveguide\n",
      "fc = c/lamda_c                     #cut-off frequency(Hz)\n",
      "\n",
      "#Results\n",
      "print \"The required cross sectional area is\", round(a,2),\"cms^2\"\n",
      "print \"Frequencies above\",round((fc/1E+9),2),\"GHz can be propagated throught the waveguide\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required cross sectional area is 26.97 cms^2\n",
        "Frequencies above 3.0 GHz can be propagated throught the waveguide\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11, Page number 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 149 example 4.11\n",
      "#For a rectangular waveguide\n",
      "import math\n",
      "f=5.*10.**9.##frequency in Hz\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "a=4.##Length of Rectangular Waveguide in cm\n",
      "b=3.##Width of Rectangular Waveguide in cm\n",
      "\n",
      "#CALCULATION\n",
      "print '%s' %('The condition for the wave to propagate along a guide is that wc>w0.')#\n",
      "w0=c/f##free space wavelength in cm\n",
      "print '%s %.2f' %('Free space wavelength w0 in cm is =',w0)#\n",
      "print '%s' %('\\nFor TE waves, wc=(2ab/sqrt((mb)**2+(na)**2))')#\n",
      "print '%s' %('For TE01 waves')#\n",
      "m1=0#\n",
      "n1=1.#\n",
      "wc1=((2.*a*b)/(math.sqrt((m1*b)**2.+(n1*a)**2.)))##Cutoff wavelength for TE01 mode in cm\n",
      "print '%s %.f' %('\\nCutoff wavelength for TE01 mode in cm is =',wc1)#\n",
      "print '%s' %('\\nSince wc for TE01=6cm is not greater than w0 TE01,will not propagate for TE01 mode.')#\n",
      "print '%s' %('For TE10 waves')#\n",
      "m2=1.#\n",
      "n2=0#\n",
      "wc2=((2.*a*b)/(math.sqrt((m2*b)**2.+(n2*a)**2.)))##Cutoff wavelength for TE10 mode in cm\n",
      "print '%s %.f' %('\\nCutoff wavelength for TE10 mode in cm is =',wc2)#\n",
      "print '%s' %('\\nSince wc TE10 > w0 TE10 is a possible mode.')#\n",
      "print '%s' %('For TE11 waves')#\n",
      "m3=1.#\n",
      "n3=1.#\n",
      "wc3=((2.*a*b)/(math.sqrt((m3*b)**2.+(n3*a)**2.)))##Cutoff wavelength for TE11 mode in cm\n",
      "print '%s %.1f' %('\\nCutoff wavelength for TE11 mode in cm is =',wc3)#\n",
      "print '%s' %('\\nAs wc TE11 < w0 TE11 does not propagate.')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The condition for the wave to propagate along a guide is that wc>w0.\n",
        "Free space wavelength w0 in cm is = 6.00\n",
        "\n",
        "For TE waves, wc=(2ab/sqrt((mb)**2+(na)**2))\n",
        "For TE01 waves\n",
        "\n",
        "Cutoff wavelength for TE01 mode in cm is = 6\n",
        "\n",
        "Since wc for TE01=6cm is not greater than w0 TE01,will not propagate for TE01 mode.\n",
        "For TE10 waves\n",
        "\n",
        "Cutoff wavelength for TE10 mode in cm is = 8\n",
        "\n",
        "Since wc TE10 > w0 TE10 is a possible mode.\n",
        "For TE11 waves\n",
        "\n",
        "Cutoff wavelength for TE11 mode in cm is = 4.8\n",
        "\n",
        "As wc TE11 < w0 TE11 does not propagate.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.12, Page number 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Cut-off wavelength,Cut-off wavelength,Guide wavelength\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "d = 4           #inner diameter of circular waveguide(cms)\n",
      "c = 3*10**10    #velocity od propagation(m/s)\n",
      "fs = 5*10**9    #signal frequency(Hz)\n",
      "\n",
      "#Calculations\n",
      "r = d/2                         #radius(cms)\n",
      "lamda_c = (2*math.pi*r)/1.841\n",
      "fc = c/lamda_c\n",
      "lamda_o = c/fs\n",
      "lamda_g = lamda_o/math.sqrt(1-((lamda_o/lamda_c)**2))\n",
      "\n",
      "#Results\n",
      "print \"Cut-off wavelength =\",round(lamda_c,4),\"cms\"\n",
      "print \"Cut-off frequency =\",round((fc/1E+9),3),\"GHz\"\n",
      "print \"Guide wavelength =\",round(lamda_g,2),\"cms\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cut-off wavelength = 6.8258 cms\n",
        "Cut-off frequency = 4.395 GHz\n",
        "Guide wavelength = 12.58 cms\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.13, Page number 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Frequency of wave\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "a = 6.               #length of rectangular waveguide(cms)\n",
      "b = 4.               #breadth of rectangular waveguide(cms)\n",
      "d = 4.55            #distance between maximum and minimum(cms)\n",
      "c = 3.*10**10        #velocity of propagation(cm/s)\n",
      "\n",
      "#Calculations\n",
      "#For TE10 mode:\n",
      "lamda_c = 2*a\n",
      "lamda_g = d*4\n",
      "lamda_o = math.sqrt(1./(((1./lamda_g**2)+(1./lamda_c**2))))\n",
      "f = c/lamda_o\n",
      "\n",
      "#Results\n",
      "print \"Frequency of wave is\",round((f/1E+9)),\"GHz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Frequency of wave is 3.0 GHz\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.14, Page number 151"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Guide wavelength,Phase constant,Phase velocity \n",
      "#chapter-4 page 151 example 4.14\n",
      "#For a rectangular waveguide\n",
      "import math\n",
      "b=2.5##Length of Rectangular Waveguide in cm\n",
      "a=5.##breadth of Rectangular Waveguide in cm\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "w0=4.5##Free space wavelength in cm\n",
      "\n",
      "#CALCULATION\n",
      "print '%s' %('For a TE10 mode which is the dominant mode')#\n",
      "wc=2.*a##Cutoff wavelength in cm\n",
      "wg=(w0/math.sqrt(1.-(w0/wc)**2.))##Guide wavelength in cm\n",
      "Vp=(c/math.sqrt(1.-(w0/wc)**2.))/10.**10.##Phase Velocity in 10**10 cm/sec\n",
      "B=((2.*(math.pi)*math.sqrt(wc**2.-w0**2.))/(w0*wc))##Phase constant in radians\n",
      "\n",
      "#OUTPUT\n",
      "print \"Solutions obtained in the textbook are incorrect due to calculation mistake in lamda_g\"\n",
      "print '%s %1.5f %s %s %1.3f %s %s %1.2f %s ' %('\\nGuide wavelength is wg  =',wg,'cm','\\nPhase constant is B =',B,'radians','\\nPhase Velocity is Vp =',Vp,'*10**10 cm/sec')#\n",
      "\n",
      "#Note: Check the answers once\n",
      "#Correct answers are\n",
      "#Guide wavelength is wg = 5.03903 cm \n",
      "#Phase constant is B = 1.247 radians \n",
      "#Phase Velocity is Vp = 3.36*10**10 cm/sec"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For a TE10 mode which is the dominant mode\n",
        "Solutions obtained in the textbook are incorrect due to calculation mistake in lamda_g\n",
        "\n",
        "Guide wavelength is wg  = 5.03903 cm \n",
        "Phase constant is B = 1.247 radians \n",
        "Phase Velocity is Vp = 3.36 *10**10 cm/sec \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.15, Page number 152"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate For any wave to be propagated, the condition to be met is wc>wo\n",
      "#chapter-4 page 152 example 4.15\n",
      "wcTE10=16.##Critical wavelength of TE10 mode in cm\n",
      "wcTM11=7.16##Critical wavelength of TM11 mode in cm\n",
      "wcTM21=5.6##Critical wavelength of TM21 mode in cm\n",
      "print '%s' %('For any wave to be propagated, the condition to be met is wc>wo')#\n",
      "wo1=10.##Free space wavelength in cm\n",
      "wo2=5.##Free space wavelength in cm\n",
      "print '%s %.2f' %('Critical wavelength of TE10 mode in cm is =',wcTE10)#\n",
      "print '%s %.2f' %('Critical wavelength of TM11 mode in cm is =',wcTM11)#\n",
      "print '%s %.2f' %('Critical wavelength of TM21 mode in cm is =',wcTM21)#\n",
      "print '%s' %('\\nFor wo1=10cm,\\nThe mode that propagates only TE10. Because wcTE10>wo1 and all other modes that is TM11 TM21 donot propagate')#\n",
      "print '%s' %('\\nFor wo2=5cm')#\n",
      "print '%s' %('wcTE10>wo2, so TE10 mode propagates')#\n",
      "print '%s' %('wcTM11>wo2, so TE11 mode propagates')#\n",
      "print '%s' %('wcTE21>wo2, so TE21 mode propagates')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For any wave to be propagated, the condition to be met is wc>wo\n",
        "Critical wavelength of TE10 mode in cm is = 16.00\n",
        "Critical wavelength of TM11 mode in cm is = 7.16\n",
        "Critical wavelength of TM21 mode in cm is = 5.60\n",
        "\n",
        "For wo1=10cm,\n",
        "The mode that propagates only TE10. Because wcTE10>wo1 and all other modes that is TM11 TM21 donot propagate\n",
        "\n",
        "For wo2=5cm\n",
        "wcTE10>wo2, so TE10 mode propagates\n",
        "wcTM11>wo2, so TE11 mode propagates\n",
        "wcTE21>wo2, so TE21 mode propagates\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.16, Page number 152"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Characteristic Wave Impedance\n",
      "#chapter-4 page 152 example 4.16\n",
      "import math\n",
      "n=120.*(math.pi)##Intrinsic Impedance\n",
      "a=3.##Length of Rectangular Waveguide in cm\n",
      "b=2.##Width of Rectangular Waveguide in cm\n",
      "f=10.**10.##Frequency in Hz\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "\n",
      "#CALCULATION\n",
      "wc=((2.*a*b)/math.sqrt(a**2.+b**2.))##Cutoff wavelength in TM11 mode in cms\n",
      "w0=(c/f)##Free space wavelength in cms\n",
      "ZTM=(n*math.sqrt(1.-(w0/wc)**2.))##Characteristic Wave Impedance in ohms\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.3f %s ' %('\\nCharacteristic Wave Impedance is ZTM=',ZTM,'ohms')#\n",
      "\n",
      "#Note: Check the given answer once it is wrong\n",
      "#correct answer is 163.242 ohms"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Characteristic Wave Impedance is ZTM= 163.242 ohms \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.17, Page number 152"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate diameter of waveguide,guide wavelength\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f = 6.*10**9     #frequency(Hz)\n",
      "c = 3.*10**10    #velocity of propagation(cm/s)\n",
      "\n",
      "#Calculations\n",
      "fc = 0.8*f\n",
      "lamda_c = c/fc\n",
      "D = (lamda_c*1.841)/math.pi\n",
      "lamda_o = c/f\n",
      "lamda_g = lamda_o/(math.sqrt(1-((lamda_o/lamda_c)**2)))\n",
      "\n",
      "#Results\n",
      "print \"diameter of waveguide =\",round(D,4),\"cms\"\n",
      "print \"guide wavelength =\",round(lamda_g,3),\"cms\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "diameter of waveguide = 3.6626 cms\n",
        "guide wavelength = 8.333 cms\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.18, Page number 153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 153 example 4.18\n",
      "#For a TE10 mode\n",
      "import math\n",
      "a=1.5##Length of an air filled square Waveguide in m\n",
      "b=1.##breadth of an air filled square Waveguide in cm\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "f=6.*10.**9.##Impressed Frequency in Hz\n",
      "er=4.##dielectric constant\n",
      "\n",
      "#CALCULATION\n",
      "wc=2.*a##Cutoff wavelength in cm\n",
      "fc=(c/wc)/10.**9.##Cutoff frequency in GHz\n",
      "print '%s %.2f' %('Cutoff frequency in GHz is =',fc)#\n",
      "\n",
      "\n",
      "print '%s' %('\\nThe impressed frequency of 6 GHz is less than the Cutoff frequency and hence the signal will not pass through the guide')#\n",
      "w=(c/f)##Wavelength in cm\n",
      "print '%s %.2f' %('\\nAlternatively, the wavelength of the impressed signal in cm is =',w)#\n",
      "wair=w#\n",
      "print '%s' %('\\nwhich is longer than the cutoff wavelength (3cm) and hence no propagation of the wave')#\n",
      "w1=wair/math.sqrt(er)##Wavelength in cm\n",
      "print '%s' %('If the waveguide is loaded with dielectric of er=4')#\n",
      "print '%s %.2f' %('\\nthen the wavelength in cm is =',w1)\n",
      "print '%s' %('\\nwhich is lessthan wair')#\n",
      "print '%s' %('Now the signal with 6 GHz frequency will pass through the dielectric loaded waveguide')#"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cutoff frequency in GHz is = 10.00\n",
        "\n",
        "The impressed frequency of 6 GHz is less than the Cutoff frequency and hence the signal will not pass through the guide\n",
        "\n",
        "Alternatively, the wavelength of the impressed signal in cm is = 5.00\n",
        "\n",
        "which is longer than the cutoff wavelength (3cm) and hence no propagation of the wave\n",
        "If the waveguide is loaded with dielectric of er=4\n",
        "\n",
        "then the wavelength in cm is = 2.50\n",
        "\n",
        "which is lessthan wair\n",
        "Now the signal with 6 GHz frequency will pass through the dielectric loaded waveguide\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.19, Page number 153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate amount of attenuation\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "a = 1.5*10**-2      #length of rectangular waveguide(m)\n",
      "b = 1               #breadth of rectangular waveguide(cms)\n",
      "f = 6*10**9         #frequency(Hz)\n",
      "c = 3*10**10        #velocity of propagation(m/s)\n",
      "m = 1\n",
      "n = 0\n",
      "mu = 4*math.pi*10**-7\n",
      "e = 8.854*10**-12\n",
      "\n",
      "#Calculations\n",
      "#For dominant TE10 mode,\n",
      "lamda_c = 2*a\n",
      "fc = c/lamda_c\n",
      "w = 2*math.pi*f\n",
      "alpha = math.sqrt((((m*math.pi)/a)**2)+(((n*math.pi)/b)**2)- ((w**2)*mu*e))\n",
      "\n",
      "#Results\n",
      "print \"The amount of attenuation is\",round(alpha,1),\"nepass/m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The amount of attenuation is 167.5 nepass/m\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.20, Page number 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate The maximum power handling capacity of the waveguide\n",
      "#chapter-4 page 154 example 4.20\n",
      "import math\n",
      "a=3.##Length of Rectangular Waveguide in cm\n",
      "b=1.##Width of Rectangular Waveguide in cm\n",
      "f=9.*10.**9.##Frequency in Hz in TE10 mode\n",
      "c=3.*10.**10.##Velocity of Light in cm/sec\n",
      "Emax=3000.##Max potential gradient in V/cm\n",
      "\n",
      "#CALCULATION\n",
      "w0=(c/f)##Free space wavelength in cms\n",
      "print '%s %.2f' %('Free space Wavelength in cm is =',w0)#\n",
      "wc=2.*a##Cutoff wavelength in TE10 mode in cms\n",
      "wg=(w0/math.sqrt(1.-(w0/wc)**2.))##Guide wavelength in cms\n",
      "print '%s %.2f' %('Guide Wavelength in cm is =',wg)#\n",
      "P=((6.63*10.**(-4.))*(Emax**2.)*a*b*(w0/wg))/1000.##Power handling capability of the waveguide in kW\n",
      "\n",
      "#OUTPUT\n",
      "print '%s'%('\\nSolution obtained in the textbook is incorrect due to rounding off the actual value of lamda_g')\n",
      "print '%s %3.3f %s' %('\\nPower handling capability of the waveguide is P=',P,'kW')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Free space Wavelength in cm is = 3.33\n",
        "Guide Wavelength in cm is = 4.01\n",
        "\n",
        "Solution obtained in the textbook is incorrect due to rounding off the actual value of lamda_g\n",
        "\n",
        "Power handling capability of the waveguide is P= 14.884 kW\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.21, Page number 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Maximum power\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f = 9*10**9       #frequency(Hz)\n",
      "d = 5             #internal diameter(cms)\n",
      "Emax = 300        #maximum field strength(V/cm)\n",
      "c = 3*10**10      #velocity of propagation(m/s)\n",
      "\n",
      "#Calculations\n",
      "lamda_o = c/f\n",
      "#For domnant mode TE11,\n",
      "lamda_c = (math.pi*d)/1.841\n",
      "lamda_g = lamda_o/math.sqrt(1-((lamda_o/lamda_c)**2))\n",
      "Pmax = 0.490*(Emax**2)*(d**2)*(lamda_o/lamda_g)\n",
      "\n",
      "#Results\n",
      "print \"Maximum power =\",round((Pmax/1E+6),3),\"*10^6 W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum power = 1.032 *10^6 W\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.22, Page number 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#chapter-4 page 155 example 4.22\n",
      "#calculate The Peak value of Electric field occuring in the guide\n",
      "#For an air filled square waveguide\n",
      "import math\n",
      "a=0.01##Length of an air filled square Waveguide in m\n",
      "b=0.01##breadth of an air filled square Waveguide in m\n",
      "c=3.*10.**8.##Velocity of Light in m/sec\n",
      "f=30.*10.**9.##Frequency in Hz in TE11 mode\n",
      "Pmax=746.##Max power =1 horsepower  in W\n",
      "n=120.*(math.pi)##Impedance of freespace in ohms\n",
      "\n",
      "#CALCULATION\n",
      "w0=(c/f)##Free space wavelength in m\n",
      "wc=2.*a##Cutoff wavelength in m\n",
      "ZTE=(n/math.sqrt(1.-(w0/wc)**2.))##Impedance in ohms\n",
      "Emax=(math.sqrt((Pmax*4*ZTE)/(a*b)))/1000.##The Peak value of Electric field occuring in the guide in kV/m\n",
      "#From P=(1/2)*Integration(Re(E*H))da\n",
      "#and Pmax=(1/(4*ZTE))*Emax**2*a*b\n",
      "\n",
      "#OUTPUT\n",
      "print '%s %.2f %s' %('\\nThe Peak value of Electric field occuring in the guide is Emax=',Emax,'kV/m')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The Peak value of Electric field occuring in the guide is Emax= 113.97 kV/m\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.23, Page number 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Breakdown power\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "a = 2.3          #length of rectangular waveguide(cms)\n",
      "b = 1.0          #breadth of rectangular waveguide(cms)\n",
      "f = 9.375*10**9  #frequency(Hz)\n",
      "c = 3*10**10     #velocity of propagation(m/s)\n",
      "\n",
      "#Calculations\n",
      "lamda_o = c/f\n",
      "x = (1-((lamda_o/(2*a))**2))**0.5\n",
      "Pbd = 597*a*b*x\n",
      "\n",
      "#Results\n",
      "print \"calculation error\"\n",
      "print \"\\nBreakdown power =\",round(Pbd,2),\"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "calculation error\n",
        "\n",
        "Breakdown power = 986.41 W\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.24, Page number 156"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Breakdown power\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "d = 5.           #internal diameter(cms)\n",
      "a = d/2\n",
      "f = 9.*10**9     #frequency(Hz)\n",
      "c = 3.*10**10   #velocity of propagation\n",
      "\n",
      "#Calculations\n",
      "lamda_o = c/f\n",
      "lamda_c = (math.pi*d)/1.841\n",
      "fc = c/lamda_c\n",
      "x = (1 - ((fc/f)**2))**0.5\n",
      "Pbd = 1790.*a*a*x\n",
      "\n",
      "#Results\n",
      "print \"Breakdown power =\",round((Pbd/1E+3),3),\"kW\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Breakdown power = 10.298 kW\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}