1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
{
"metadata": {
"name": "",
"signature": "sha256:d1145daae7a009dc147f6efee5af89bfe5d87a34b4299d2e73cdea767a001b6c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter8:AVALANCHE TRANSIT-TIME DEVICES"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg8.2.1:pg-331"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)Calculate the maximum CW power\n",
"n=0.15 #efficiency\n",
"Vomax=100 #maximum operating voltage in volt\n",
"Iomax=200*(10**-3) #maximum operating current in ampere\n",
"Pdc=Vomax*Iomax \n",
"P=n*Pdc \n",
"print\"The maximum CW power(in Watts)is =\",int(P),\"W\"\n",
"\n",
"#(b) Calculate the resonant frequency\n",
"L=6*(10**-6) #drift-region Length in meter\n",
"vd=2*(10**5) #carrier drift velocity in m/s\n",
"f=vd/(2*L) \n",
"f=f/(10**9) #in GHz\n",
"print\"The resonant frequency(in GHz)is =\",round(f,2),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum CW power(in Watts)is = 3 W\n",
"The resonant frequency(in GHz)is = 16.67 GHz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg8.3.1:pg-334"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the avalanche-zone velocity\n",
"J=20*(10**3) #current density in A/cm**2\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"NA=2*(10**15) #Doping Concentration in /cm**3\n",
"vs=J/(q*NA) \n",
"print\"Avalanche-zone velocity(in cm/s)is =\",\"{:.2e}\".format(vs),\"cm/s\"\n",
"\n",
"print('This means that the avalanch-zone velocity is much larger than the scattering-limited velocity') "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Avalanche-zone velocity(in cm/s)is = 6.25e+07 cm/s\n",
"This means that the avalanch-zone velocity is much larger than the scattering-limited velocity\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg8.4.1:pg-338"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the break down voltage\n",
"q=1.6*(10**-19) #charge of electron\n",
"N=2.8*(10**21) #Donor Concentration /m**3\n",
"L=6*(10**-6) #silicon length in meter\n",
"er=11.8 #Relative dielectric constant of silicon\n",
"es=8.854*(10**-12)*er #permittivity of silicon in F/m\n",
"Vbd=(q*N*(L**2))/es \n",
"print\"The break down voltage(in Volts) is =\",round(Vbd,2),\"V\" \n",
"\n",
"#(b)Calculate the break down electric field\n",
"Ebd=Vbd/L \n",
"print\"the break down electric field is =\",\"{:.3e}\".format(Ebd),\"V/m =\",\"{:.3e}\".format(Ebd/100),\"V/cm\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The break down voltage(in Volts) is = 154.37 V\n",
"the break down electric field is = 2.573e+07 V/m = 2.573e+05 V/cm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg8.5.1:pg-346"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a)Calculate the power gain in decibels\n",
"R=25 #R=f0/fs ,ratio of output frequency over signal frequency\n",
"yQ=10 #figure of merit\n",
"x=((yQ)**2)/R \n",
"PG=(R*x)/((1+sqrt(1+x))**2) \n",
"PG=10*math.log10(PG) #calculating in dB\n",
"print\"The power gain (in dB)is =\",round(PG,3),\"dB\" \n",
"\n",
"#(b)Calculate the noise figure in decibels\n",
"\n",
"Td=350 #Diode temperature in degree Kelvin\n",
"To=300 #ambient Temperature in degree Kelvin\n",
"F=1+(((2*Td)/To)*((1.0/yQ)+(1.0/yQ**2)))\n",
"F=10*log10(F) #calculating in dB\n",
"print\"The noise figure (in dB)is =\",int(round(F)),\"dB\"\n",
"\n",
"#(c)Calculate the band width\n",
"y=0.4 #factor of merit figure\n",
"BW=2*y*sqrt(R) #R=fo/fs\n",
"print\"The band width is =\",int(BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The power gain (in dB)is = 9.8 dB\n",
"The noise figure (in dB)is = 1 dB\n",
"The band width is = 4\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|