1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
{
"metadata": {
"name": "",
"signature": "sha256:a04d8bca9534fb9597d80a980e2f1b54e0ff54b9697a6bc1d33eb2c967636be8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter7:TRANSFERRED ELECTRON DEVICES(TEDs)"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg7.2.1:pg-294"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the conductivity of the diode\n",
"e=1.6*(10**-19) #charge of electron in C\n",
"nl=(10**10)*(10**6) #electron density at lower valley in /m**3\n",
"nu=(10**8)*(10**6) #electron density at upper valley in /m**3\n",
"ul=8000*(10**-4) #electron mobility at lower valley in m2/V-sec\n",
"uu=180*(10**-4) #electron mobility at upper valley in m2/V-sec\n",
"o=e*((nl*ul)+(nu*uu)) \n",
"o=o*1000 #in milli mhos\n",
"print\"The conductivity of the diode(in mmhos)is=\",round(o,2),\"mmhos\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the conductivity of the diode(in mmhos)is= 1.28 mmhos\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg7.2.2:pg-298"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)Calculate the electron drift velocity\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"f=10*(10**9) #operating frequency in Hertz\n",
"L=10*(10**-6) #Device Length in meter\n",
"vd=f*L \n",
"print\"The electron drift velocity is =\",\"{:.0e}\".format(vd),\"m/s\",\"{:.0e}\".format(vd*100),\"cm/s\"\n",
"\n",
"#(b)Calculate the current density\n",
"n=2*(10**14)*(10**6) \n",
"J=q*n*vd \n",
"print\"The current density is =\",\"{:.1e}\".format(J),\"A/m2 =\",int(round(J/(10**4))),\"A/cm2\"\n",
"\n",
"#(c)CAPTION: Calculate the negative electron mobility\n",
"E=3200 #applied field\n",
"vd=vd*(100) #in cm/sec\n",
"un=-1*vd/E \n",
"print\"Negative electron mobility(in cm**2/V*sec) is =\",int(round(un)),\"cm2/V.s\" #answer is wrong in book "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron drift velocity is = 1e+05 m/s 1e+07 cm/s\n",
"The current density is = 3.2e+06 A/m2 = 320 A/cm2\n",
"Negative electron mobility(in cm**2/V*sec) is = -3125 cm2/V.s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg7.3.1:pg-304"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the criteria for classifying the modes of operation\n",
"er=13.1 #relative dielectric constant\n",
"vd=2.5*(10**5) #electron drift velocity in m/sec\n",
"e=1.6*(10**-19) #charge of electron in C\n",
"E=8.854*(10**-12)*er #permittivity of GaAs in F/m\n",
"un=-0.015 #negative electron mobility in m**2/v.s\n",
"un=-1*un\n",
"a=(E*vd)/(e*un)\n",
"print\"The criteria is=\",\"{:.3e}\".format(a),\"/m2 =\",\"{:.3e}\".format(a/10000),\"/cm2\" #calculation mistake in book \n",
"print\"This means that the product of doping concentration and the device length must be\"\n",
"print\"noL >\",\"{:.3e}\".format(a/10000),\"/cm2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The criteria is= 1.208e+16 /m2 = 1.208e+12 /cm2\n",
"This means that the product of doping concentration and the device length must be\n",
"noL > 1.208e+12 /cm2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg7.4.1:pg-311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the output power\n",
"n=0.06 #conversion efficiency\n",
"M=3.5 #Multiplication factor\n",
"Eth=320*(10**3) #threshold field in V/m\n",
"L=12*(10**-6) #Device Length in m\n",
"n0=10**21 #Donor concentration in m**3\n",
"e=1.6*(10**-19) #charge of electron in C\n",
"v0=1.5*(10**5) #Average carrier velocity in m/sec\n",
"A=3*(10**-8) #Area m**2\n",
"p=n*(M*Eth*L)*(n0*e*v0*A) \n",
"p=p*1000 # in mW\n",
"print\"The output power(in mW)is=\",int(round(p)),\"mW\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The output power(in mW)is= 581 mW\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|