1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
{
"metadata": {
"name": "",
"signature": "sha256:0febf6654b4226cea8bd31c369bda102743b50db8084bc6251d5320576f18189"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6:MICROWAVE FIELD-EFFECT TRANSISTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.1.1:pg-229"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculation of pinch-off voltage\n",
"\n",
"a=0.1*(10**-6) #channel height in m\n",
"Nd=8*(10**23) #Electron Concetration in m-3\n",
"er=11.80 #relative dielectric constant\n",
"es=8.854*(10**-12)*er #permittivity of silicon in F/m\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"Vp=(q*Nd*(a**2))/(2*es) #pinch-off voltage\n",
"\n",
"print\"Pinch-off volatge in(Volts)is=\",round(Vp,2),\"Volts\" #answer is wrong in book \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pinch-off volatge in(Volts)is= 6.13 Volts\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.1.2:pg-233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a)Calculate the pinch-off Voltage in Volts\n",
"a=0.2*(10**-4) #channel height in cm\n",
"Nd=1*(10**17) #Electron density in /cm3\n",
"er=11.80 #relative dielectric constant\n",
"es=8.854*(10**-14)*er #permittivity of silicon in F/cm\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"Vp=(q*Nd*(a**2))/(2*es) #pinch-off voltage\n",
"print\"The pinch-off volatge in(Volts)is=\",round(Vp,2),\"V\"\n",
"\n",
"#(b)Calculate the pinch-off current\n",
"un=800 #electron mobility in cm2/V.s\n",
"L=8*(10**-4) #channel length in cm\n",
"Z=50*(10**-4) #channel width in cm\n",
"a=0.2*(10**-4) #channel height in cm\n",
"Nd=1*(10**17) #Electron density in /cm3\n",
"er=11.80 #relative dielectrin constant\n",
"es=8.854*(10**-14)*er #permittivity of silicon in F/cm\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"Ip=(un*(q**2)*(Nd**2)*Z*(a**3))/(L*es) #pinch-off voltage\n",
"Ip=Ip*1000 # in mA\n",
"print\"The pinch-off current in(mA)is=\",round (Ip,2),\"mA\"\n",
"\n",
"#(c)Calculate the built-in voltage\n",
"Nd=1*(10**17) #Electron density in /cm3\n",
"Na=1*(10**19) #hole density in /cm3\n",
"w0=26*(10**-3)*math.log((Nd*Na)/((1.5*(10**10))**2))\n",
"print\"Built-in voltage in(volts)is=\",round(w0,3),\"V\"\n",
"\n",
"#(d) Calculate the drain current\n",
"Vd=10 #drain voltage in volt\n",
"Vg=-1.5 #gate voltage in volt\n",
"Vg=-1*Vg #we take only magnitude\n",
"x=sqrt(((Vd+Vg+round(w0,3))/round(Vp,2))**3)\n",
"x=x*2/3\n",
"y=sqrt(((Vg+round(w0,3))/(round(Vp,2)))**3)\n",
"y=y*2/3\n",
"Id=(Vd/round(Vp,2))-x+y\n",
"Id=round(Ip,2)*Id\n",
"print\"The drain current (mA)is=\",round(Id,2),\"mA\" #answer is wrong in book\n",
"\n",
"#(e) Calculate the saturation drain current at Vg=0\n",
"Vg=-1.5 #gate voltage in volt\n",
"Vg=-1*Vg #we take only magnitude\n",
"x=(Vg+round(w0,3))/(round(Vp,2))\n",
"y=sqrt(((Vg+round(w0,3))/(round(Vp,2)))**3)\n",
"y=y*2/3\n",
"Idsat=(1.0/3)-x+y\n",
"Idsat=round(Ip,2)*Idsat\n",
"print\"The saturation drain current (mA)is=\",round(Idsat,3),\"mA\" #answer is wrong in book\n",
"\n",
"#(f) Calculate the cut-off frequency\n",
"fc=(2*un*q*Nd*(a**2))/(math.pi*es*(L**2));\n",
"fc=fc/(10**9) #in GHz\n",
"print\"The cut-off frequency(Ghz)=\",round(fc,1),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The pinch-off volatge in(Volts)is= 3.06 V\n",
"The pinch-off current in(mA)is= 9.8 mA\n",
"Built-in voltage in(volts)is= 0.937 V\n",
"The drain current (mA)is= -16.86 mA\n",
"The saturation drain current (mA)is= 0.105 mA\n",
"The cut-off frequency(Ghz)= 4.9 GHz\n"
]
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.2.1:pg-239"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Pinch-Off Voltage Of a MESFET\n",
"\n",
"a=0.1*(10**-6) #channel height in meter\n",
"Nd=8*(10**23) #Electron Concetration /m3\n",
"er=13.10 #relative dielectric constant\n",
"es=8.854*(10**-12)*er #permittivity of GaAs in F/m\n",
"q=1.6*(10**-19) #electronic charge in C\n",
"Vp=(q*Nd*(a**2))/(2*es)#pinch-off voltage\n",
"\n",
"print\"Pinch-off volatge in(Volts)is=\",round(Vp),\"V\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pinch-off volatge in(Volts)is= 6.0 V\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.2.2:pg-244"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#(a) Calculate the pinch-off voltage\n",
"a=0.1*(10**-6) #channel height in meter\n",
"Nd=8*(10**23) #Electron Concetration in /m3\n",
"er=13.1 #relative dielectric constant\n",
"e=8.854*(10**-12)*er #permittivity of GaAs in F/m\n",
"q=1.6*(10**-19) #electronic charge in C\n",
"Vp=(q*Nd*(a**2))/(2*e) #pinch-off voltage\n",
"\n",
"print\"Pinch-off volatge in(Volts)is=\",round(Vp,2),\"V\"\n",
"\n",
"#(b)Calculate the velocity ratio\n",
"un=0.08 #electron mobility in m2/V.s\n",
"vs=2*(10**5) #saturation drift velocity in m/s\n",
"L=14*(10**-6) #channel length in meter \n",
"n=(Vp*un)/(vs*L)\n",
"print\"The velocity ratio is=\",round(n,3)\n",
"\n",
"#(c) Calculate the saturation current at Vg=0\n",
"L=14*(10**-6) #channel length in meter\n",
"Z=36*(10**-6) #channel width in meter\n",
"Ipsat=(q*Nd*un*a*Z*round(Vp,2))/(3*L)\n",
"Ipsat=Ipsat*1000 #in mA\n",
"print\"The saturation current at Vg=0 is=\",round(Ipsat,3),\"mA\"\n",
"\n",
"#(d) Calculate the drain current\n",
"\n",
"Vd=5 #drain voltage\n",
"Vg=-2 #gate voltage\n",
"Vg=-1*Vg\n",
"u=sqrt((Vd+Vg)/Vp)\n",
"p=sqrt((Vg)/Vp)\n",
"Id=(3*((u**2)-(p**2))-2*((u**3)-(p**3)))/(1+(n*((u**2)-(p**2))))\n",
"Id=Id*Ipsat\n",
"print\"The drain current (mA)is=\",round(Id,2),\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pinch-off volatge in(Volts)is= 5.52 V\n",
"The velocity ratio is= 0.158\n",
"The saturation current at Vg=0 is= 4.845 mA\n",
"The drain current (mA)is= 1.26 mA\n"
]
}
],
"prompt_number": 44
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.2.3:pg-247"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a) Calculate the cut-off frequency\n",
"gm=0.05 #device transconductance in mho \n",
"Cgs=0.60*(10**-12) #gate source capacitance in Farad\n",
"fco=(gm)/(2*math.pi*Cgs) \n",
"fco=fco/(10**9) #in GHz\n",
"print\"The cut-off frequency(in GHz)is=\",round(fco,2),\"GHz\" \n",
"\n",
"#(b)Calculate the maximum operating frequency\n",
"Rd=450 #drain resistance in ohms\n",
"Rs=2.5 #source-gate resistance in ohms\n",
"Rg=3 #gate metallization resistance in ohms\n",
"Ri=2.5 #input resistance\n",
"fmax=(fco/2)*sqrt(Rd/(Rs+Rg+Ri)) \n",
"print\"The maximum operating frequency(in Ghz)is=\",round(fmax,2),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cut-off frequency(in GHz)is= 13.26 GHz\n",
"The maximum operating frequency(in Ghz)is= 49.74 GHz\n"
]
}
],
"prompt_number": 46
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.3.1:pg-251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the Drain Current\n",
"q=1.60*(10**-19) #charge of electron in C\n",
"n=5.21*(10**15) #two-dimensional electron gas density in /m2\n",
"W=150*(10**-6) #gate width in meter\n",
"v=2*(10**5) #electron velocity in m/sec\n",
"Ids=q*n*W*v \n",
"Ids=1000*Ids #in mA\n",
"print\"The drain current in(mA) is=\",int(Ids),\"mA\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The drain current in(mA) is= 25 mA\n"
]
}
],
"prompt_number": 47
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.3.2:pg-253"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the conduction band-edge difference between GaAs and AlGaAs\n",
"Ega=1.8 #AlGaAs bandgap in volt\n",
"Egg=1.43 #GaAs bandgap in volt\n",
"AEc=Ega-Egg \n",
"print\"The conduction band-edge difference(in Volt) is=\",AEc,\"V\"\n",
"\n",
"#(b) Calculate the sesitivity of the HEMT\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"Nd=2*(10**24) #donar concentration /m3\n",
"wms=0.8 #metal-semiconductor schottky barrier potential in volt\n",
"Vth=0.13 #threshold voltage in volt\n",
"er=4.43 #AlGaAs dielectric constant\n",
"e=er*(8.854*(10**-12)) \n",
"S=-sqrt((2*q*Nd*(wms-AEc-Vth))/(e)) #sesitivity of the HEMT\n",
"S=S/(10**6) \n",
"S=-1*S\n",
"print\"The sensitivity of the HEMT (mV/nm) is=\",int(round(S)),\"mV/nM\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conduction band-edge difference(in Volt) is= 0.37 V\n",
"The sensitivity of the HEMT (mV/nm) is= 70 mV/nM\n"
]
}
],
"prompt_number": 48
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.4.1:pg-260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a) Calculate the surface potential ws(inv) for strong inversion\n",
"kt=26*(10**-3) \n",
"Na=3*(10**17) #doping concentration in /cm3\n",
"Ni=1.5*(10**10) \n",
"wsinv=2*kt*math.log(Na/Ni) \n",
"print\"The strong potential w(inv) for strong inversion(in volts) is=\",round(wsinv,3),\"V\"\n",
"\n",
"#(b)Calculate the insulator Capacitance\n",
"eir=4 #relative dielectric constant of SiO2\n",
"ei=8.854*(10**-12)*eir #permittivity of SiO2 in F/m\n",
"d=0.01*(10**-6) #insulator depth in meter\n",
"Ci=ei/d \n",
"Ci=Ci*(1000) \n",
"print\"The insulator Capacitance(in mF/m**2) is=\",round(Ci,2),\"mF/m2\"\n",
"\n",
"#(c) Calculate the threshold voltage\n",
"q=1.6*(10**-19) \n",
"Na=3.0*(10**23) \n",
"er=11.8 \n",
"e=8.854*(10**-12)*er #permittivity of SiO2 in F/m\n",
"Vth=wsinv+((2/(Ci*(10**-3)))*sqrt(e*q*Na*(wsinv/2)))\n",
"print\"The threshold voltage(in Volts) is=\",round(Vth,2),\"V\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The strong potential w(inv) for strong inversion(in volts) is= 0.874 V\n",
"The insulator Capacitance(in mF/m**2) is= 3.54 mF/m2\n",
"The threshold voltage(in Volts) is= 1.71 V\n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.4.2:pg-262"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)Calculate the insulator capacitance\n",
"eir=3.9 #constant of SiO2\n",
"ei=8.854*(10**-12)*eir #permittivity of SiO2 in F/m\n",
"d=0.05*(10**-6) #insulator thickness in meter\n",
"Ci=ei/d \n",
"print\"The insulator capacitance(in F/m**2) is=\",\"{:.2e}\".format(Ci),\"F/m2\"\n",
"\n",
"#(b)Calculate the saturation drain current\n",
"Z=12*(10**-6) #channel depth in meter\n",
"Vg=5 #gate voltage in volt\n",
"Vth=0.10 #threshold voltage in volt\n",
"vs=1.70*(10**5) #electron velocity in m/s\n",
"Idsat=Z*round(Ci,6)*(Vg-Vth)*vs\n",
"Idsat=Idsat*1000 #in mA\n",
"print\"The saturation drain current(in mA) is=\",round(Idsat,2),\"mA\"\n",
"\n",
"#(c)Calculate the transconductance in the saturation region\n",
"Z=12*(10**-6) #channel depth in meter\n",
"vs=1.70*(10**5) #electron velocity in m/s\n",
"gmsat=Z*Ci*vs \n",
"gmsat=gmsat*10**3\n",
"print\"the transconductance in the saturation region(in millimhos) is=\",round(gmsat,2),\"millimhos\" \n",
"\n",
"#(d)Calculate the maximum operating frequency in the saturation region\n",
"vs=1.70*(10**5) \n",
"L=4*(10**-6) #channel length in meter\n",
"fm=vs/(2*math.pi*L) \n",
"fm=fm/(10**9) #in GHz\n",
"print\"The maximum operating frequency in the saturation region(in GHz) is=\",round(fm,2),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The insulator capacitance(in F/m**2) is= 6.91e-04 F/m2\n",
"The saturation drain current(in mA) is= 6.91 mA\n",
"the transconductance in the saturation region(in millimhos) is= 1.41 millimhos\n",
"The maximum operating frequency in the saturation region(in GHz) is= 6.76 GHz\n"
]
}
],
"prompt_number": 50
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.6.1:pg-278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculate the power dissipation per bit\n",
"n=3 #number of phases \n",
"f=10*(10**6) #clock frequency in Hertz\n",
"V=10 #applied voltage in volts\n",
"Qmax=0.04*(10**-12) #maximum stored charges in Coulomb\n",
"p=n*f*V*Qmax \n",
"p=p*(10**6) #in mW\n",
"print\"The power dissipation per bit(micro watt)is=\",int(p),\"micro Watt\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The power dissipation per bit(micro watt)is= 12 micro Watt\n"
]
}
],
"prompt_number": 51
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6.6.2:pg-279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)Calculate the insulator capacitance\n",
"eir=3.9 #insulator relative dielectric constant\n",
"ei=8.854*(10**-12)*eir #permittivity of material in F/m\n",
"d=.15*(10**-6) #insulator thickness in meter\n",
"Ci=ei/d \n",
"Ci=Ci*(10**5) \n",
"print\"The insulator capacitance(in nF/cm**2) is =\",int(round(Ci)),\"nF/cm2\" \n",
"\n",
"#(b)Calculate the maximum stored charges per well\n",
"Nmax=2*(10**12) #electron density in /cm2\n",
"q=1.6*(10**-19) #charge of electron in C\n",
"A=.5*(10**-4) #insulator cross-section in cm2\n",
"Qmax=Nmax*A*q \n",
"Qmax=Qmax*(10**12) #in pC\n",
"print\"The maximum stored charges per well(picocoulombs)is=\",int(Qmax),\"pC\"\n",
"\n",
"#(c) Calculate the required applied gate voltage\n",
"Nmax=2*(10**12) \n",
"q=1.6*(10**-19) \n",
"Vg=(Nmax*q)/(Ci*10**-9) \n",
"print\"The required applied gate voltage(in Volts) is=\",int(round(Vg)),\"V\"\n",
"\n",
"#(d)Calculate the clock frequency\n",
"P=.67*(10**-3) #power dissipation allowable per bit in Watt\n",
"n=3 \n",
"f=P/(n*Vg*Qmax*(10**-12)) \n",
"f=f/(10**6) #in MHz\n",
"print\"The clock frequency(in MHz) is=\",int(f),\"MHz\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The insulator capacitance(in nF/cm**2) is = 23 nF/cm2\n",
"The maximum stored charges per well(picocoulombs)is= 16 pC\n",
"The required applied gate voltage(in Volts) is= 14 V\n",
"The clock frequency(in MHz) is= 1 MHz\n"
]
}
],
"prompt_number": 58
}
],
"metadata": {}
}
]
}
|