1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
{
"metadata": {
"name": "",
"signature": "sha256:319b3f32e409bff3be02756cf61b3db7331d3cf7998339ca41a86fd66771d9c7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter09:Operational-Amplifier and\n",
"Data-Converter Circuits"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9.1:pg-881"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Example 9.1 Design of two-stage CMOS op-amp \n",
"A_v=4000.0; # (V/V)\n",
"V_A=20.0; # (V)\n",
"k_p=80.0*10**-6; # k'_n=k_n (A/V**2)\n",
"k_n=200.0*10**-6; # k'_p=k_P (A/V**2)\n",
"V_SS=1.65; # (V)\n",
"V_DD=1.65; # (V)\n",
"V_tn=0.5; # (V)\n",
"V_tp=0.5; # (V)\n",
"C_1=0.2*10**-12; # (F)\n",
"C_2=0.8*10**-12; # (F)\n",
"I_D=100.0*10**-6; # (A)\n",
"V_OV=math.sqrt(V_A**2/A_v);\n",
"WbyL_1=I_D*2/(V_OV**2*k_p); # WbyL_1=(W/L)_1\n",
"print WbyL_1,\"= Required (W/L) ratio for Q_1\"\n",
"WbyL_2=WbyL_1; # WbyL_2=(W/L)_2\n",
"print WbyL_2,\"= Required (W/L) ratio for Q_2\"\n",
"WbyL_3=I_D*2/(V_OV**2*k_n); # WbyL_3=(W/L)_3\n",
"print WbyL_3,\"= Required (W/L) ratio for Q_3\"\n",
"WbyL_4=WbyL_3; # WbyL_4=(W/L)_4\n",
"print WbyL_4,\"= Required (W/L) ratio for Q_4\"\n",
"I_D=200*10**-6;\n",
"WbyL_5=I_D*2/(V_OV**2*k_p); # WbyL_5=(W/L)_5\n",
"print WbyL_5,\"= Required (W/L) ratio for Q_5\"\n",
"I_D=500*10**-6;\n",
"WbyL_7=2.5*WbyL_5; # WbyL_7=(W/L)_7 \n",
"print WbyL_7,\"= Required (W/L) ratio for Q_7\"\n",
"WbyL_6=I_D*2/(V_OV**2*k_n); # WbyL_6=(W/L)_6\n",
"print WbyL_6,\"= Required (W/L) ratio for Q_6\"\n",
"WbyL_8=0.1*WbyL_5; # WbyL_8=(W/L)_8\n",
"print WbyL_8,\"= Required (W/L) ratio for Q_8\"\n",
"V_ICMmin=-V_SS+V_OV+V_tn-V_tp;\n",
"print round(V_ICMmin,2),\"= The lowest value of input common mode voltage\"\n",
"V_ICMmax=V_DD-V_OV-V_OV-V_tp;\n",
"print round(V_ICMmax,2),\"= The highest value of input common mode voltage\"\n",
"v_omin=-V_SS+V_OV;\n",
"print round(v_omin,2),\"= The lowest value of output swing allowable\"\n",
"v_omax=V_DD-V_OV;\n",
"print round(v_omax,2),\"= The highest value of output swing allowable\"\n",
"R_o=20/(2*0.5);\n",
"print R_o,\"= Input resistance is practically infinite and output reistance is (Kohm)\"\n",
"G_m2=2*I_D/V_OV;\n",
"print round(G_m2*1e3,1),\"= G_m2 (mA/V)\"\n",
"f_P2=3.2*10**-3/(2*math.pi*C_2);\n",
"print round(f_P2/1e6),\"= f_P2 (MHz)\"\n",
"R=1/G_m2;\n",
"print int(R),\"= To move the transmission zero to s=infinite , r value selected as (ohm)\"\n",
"f_t=f_P2*tan(15*math.pi/180.0); # Phase margin of 75 degrees , thus phase shift due to seccond pole must be 15 degrees\n",
"print round(f_t/1e6),\"= f_t (MHz)\"\n",
"G_m1=2*100*10**-6/V_OV; # I_D = 100uA\n",
"C_C1=G_m1/(2*math.pi*f_t);\n",
"print round(C_C1/1e-12,1),\"= C_C1 (picoF)\"\n",
"SR=2*math.pi*f_t*V_OV;\n",
"print round(SR/1e6),\"= SR (V/micros)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"25.0 = Required (W/L) ratio for Q_1\n",
"25.0 = Required (W/L) ratio for Q_2\n",
"10.0 = Required (W/L) ratio for Q_3\n",
"10.0 = Required (W/L) ratio for Q_4\n",
"50.0 = Required (W/L) ratio for Q_5\n",
"125.0 = Required (W/L) ratio for Q_7\n",
"50.0 = Required (W/L) ratio for Q_6\n",
"5.0 = Required (W/L) ratio for Q_8\n",
"-1.33 = The lowest value of input common mode voltage\n",
"0.52 = The highest value of input common mode voltage\n",
"-1.33 = The lowest value of output swing allowable\n",
"1.33 = The highest value of output swing allowable\n",
"20.0 = Input resistance is practically infinite and output reistance is (Kohm)\n",
"3.2 = G_m2 (mA/V)\n",
"637.0 = f_P2 (MHz)\n",
"316 = To move the transmission zero to s=infinite , r value selected as (ohm)\n",
"171.0 = f_t (MHz)\n",
"0.6 = C_C1 (picoF)\n",
"339.0 = SR (V/micros)\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9.2:pg-889"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Example 9.2 : To determine A_v,f_t,f_P,SR and P_D of folded cascode amplifier\n",
"# Consider a design of the folded-cascode op amp\n",
"I=200*10.0**-6; # (A)\n",
"I_B=250.0*10**-6; # (A)\n",
"V_OV=0.25; # (V)\n",
"k_n=100.0*10**-6; # k_n=k'_n (A/V**2)\n",
"k_p=40*10.0**-6; # k_p=k'_p (A/V**2)\n",
"V_A=20.0; # V_A=V'_A (V/um)\n",
"V_DD=2.5; # (V)\n",
"V_SS=2.5; # (V)\n",
"V_t=0.75; # (V)\n",
"L=1*10.0**-6; # (m)\n",
"C_L=5*10.0**-12; # (F)\n",
"print \"Data calculated for Q1\"\n",
"I_D=I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print r_o/1000,\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q2\"\n",
"I_D=I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print r_o/1000,\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q3\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_p*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q4\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_p*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q5\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print g_m,\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q6\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q7\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q8\"\n",
"I_D=I_B-I/2;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q9\"\n",
"I_D=I_B;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_p*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q10\"\n",
"I_D=I_B;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print int(r_o/1000),\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_p*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"print \"Data calculated for Q11\"\n",
"I_D=I;\n",
"print round(I_D*1e6),\"= I_D (microA)\"\n",
"g_m=2*I_D/V_OV;\n",
"print round(g_m*1e3,1),\"= g_m (mA/V)\"\n",
"r_o=V_A/I_D;\n",
"print r_o/1000,\"= r_o (Kohm)\"\n",
"WbyL=2*I_D/(k_n*V_OV**2); # WbyL =W/L\n",
"print WbyL,\"= W/L\"\n",
"gmro=160; # gmro=g_m*r_o\n",
"print gmro,\"= g_m*r_o for all transistors is (V/V)\"\n",
"V_GS=1;\n",
"print V_GS,\"= V_GS for all transistors is (V)\"\n",
"V_ICMmin=-V_SS+V_OV+V_OV+V_t;\n",
"print V_ICMmin,\"= The lowest value of input common mode voltage (V)\"\n",
"V_ICMmax=V_DD-V_OV+V_t;\n",
"print V_ICMmax,\"= The highest value of input common mode voltage (V)\"\n",
"v_omin=-V_SS+V_OV+V_OV+V_t;\n",
"print v_omin,\"= The lowest value of output swing allowable (V)\"\n",
"v_omax=V_DD-V_OV-V_OV;\n",
"print v_omax,\"= The highest value of output swing allowable (V)\"\n",
"r_o2=200.0*10**3; # r_o calculated for Q2\n",
"r_o10=80.0*10**3; # r_o calculated for Q10\n",
"R_o4=gmro*(r_o2*r_o10)/(r_o2+r_o10);\n",
"r_o8=133333.0; # r_o calculated for Q8\n",
"R_o6=gmro*r_o8;\n",
"R_o=R_o4*R_o6/(R_o4+R_o6);\n",
"print round(R_o/1e6,1),\"= Output resistance (Mohm)\"\n",
"G_M=0.0008;\n",
"A_v=G_M*R_o;\n",
"print round(A_v),\"= Voltage gain (V/V)\"\n",
"f_t=G_M/(2*math.pi*C_L);\n",
"print round(f_t/1e6,1),\"= Unity gain bandwidth (MHz)\"\n",
"f_P=f_t/A_v;\n",
"print round(f_P/1e3),\"= Dominant pole frequency (KHz)\"\n",
"SR=I/C_L;\n",
"print round(SR/1e6),\"= Slew Rate (V/microsecond)\"\n",
"I_t=0.5*10**-3; # total current\n",
"V_S=5; # Supply voltage\n",
"P_D=I_t*V_S;\n",
"print round(P_D*1e3,1),\"= Power dissipated (mW)\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Data calculated for Q1\n",
"100.0 = I_D (microA)\n",
"0.8 = g_m (mA/V)\n",
"200.0 = r_o (Kohm)\n",
"32.0 = W/L\n",
"Data calculated for Q2\n",
"100.0 = I_D (microA)\n",
"0.8 = g_m (mA/V)\n",
"200.0 = r_o (Kohm)\n",
"32.0 = W/L\n",
"Data calculated for Q3\n",
"150.0 = I_D (microA)\n",
"1.2 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"120.0 = W/L\n",
"Data calculated for Q4\n",
"150.0 = I_D (microA)\n",
"1.2 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"120.0 = W/L\n",
"Data calculated for Q5\n",
"150.0 = I_D (microA)\n",
"0.0012 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"48.0 = W/L\n",
"Data calculated for Q6\n",
"150.0 = I_D (microA)\n",
"1.2 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"48.0 = W/L\n",
"Data calculated for Q7\n",
"150.0 = I_D (microA)\n",
"1.2 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"48.0 = W/L\n",
"Data calculated for Q8\n",
"150.0 = I_D (microA)\n",
"1.2 = g_m (mA/V)\n",
"133 = r_o (Kohm)\n",
"48.0 = W/L\n",
"Data calculated for Q9\n",
"250.0 = I_D (microA)\n",
"2.0 = g_m (mA/V)\n",
"80 = r_o (Kohm)\n",
"200.0 = W/L\n",
"Data calculated for Q10\n",
"250.0 = I_D (microA)\n",
"2.0 = g_m (mA/V)\n",
"80 = r_o (Kohm)\n",
"200.0 = W/L\n",
"Data calculated for Q11\n",
"200.0 = I_D (microA)\n",
"1.6 = g_m (mA/V)\n",
"100.0 = r_o (Kohm)\n",
"64.0 = W/L\n",
"160 = g_m*r_o for all transistors is (V/V)\n",
"1 = V_GS for all transistors is (V)\n",
"-1.25 = The lowest value of input common mode voltage (V)\n",
"3.0 = The highest value of input common mode voltage (V)\n",
"-1.25 = The lowest value of output swing allowable (V)\n",
"2.0 = The highest value of output swing allowable (V)\n",
"6.4 = Output resistance (Mohm)\n",
"5120.0 = Voltage gain (V/V)\n",
"25.5 = Unity gain bandwidth (MHz)\n",
"5.0 = Dominant pole frequency (KHz)\n",
"40.0 = Slew Rate (V/microsecond)\n",
"2.5 = Power dissipated (mW)\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9.3:pg-908"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Example 9.3 : To determine input offset voltage\n",
"r_e=2.63*10**3; # (ohm)\n",
"R=1000; # (ohm)\n",
"I=9.5*10**-6; # (A)\n",
"deltaRbyR=0.02; # 2% mismatch between R_1 and R_2\n",
"G_m1=10**-3/5.26; # (A/V)\n",
"deltaI=deltaRbyR/(1+deltaRbyR + r_e/R); # Change of deltaI in I_E (A)\n",
"V_OS=deltaI/G_m1/1e2;\n",
"print round(V_OS,1),\"= Offset voltage (mV)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.3 = Offset voltage (mV)\n"
]
}
],
"prompt_number": 42
}
],
"metadata": {}
}
]
}
|