summaryrefslogtreecommitdiff
path: root/Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb
blob: 5bdfcf5d5825a0cd5d5518c7cec3eb4320828442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
{

 "metadata": {

  "name": "",

  "signature": "sha256:04c770610947ad7b99d743d99cd805c99779dc1a6616f379e3e115323e61d9f6"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter14:Output Stages and Power Amplifiers"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex14.1:pg-1239"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 14.1 To design a Class B Output Amplifier\n",

      "\n",

      "P_L=20; # Average power (W) \n",

      "R_L=8; # Load resistance (ohm)\n",

      "V_o=math.sqrt(2*P_L*R_L); \n",

      "print round(V_o,1),\"= Supply voltage required (V)\"\n",

      "V_CC=23; # We select this voltage (V)\n",

      "I_o=V_o/R_L;\n",

      "print round(I_o,2),\"= Peak current drawn from each supply (A)\"\n",

      "P_Sav=V_CC*I_o/math.pi; # P_S+ = P_S- = P_Sav\n",

      "P_S=P_Sav+P_Sav; # Total supply power\n",

      "print round(P_S,1),\"= The total power supply (W)\"\n",

      "n=P_L/P_S; # n is power conversion efficiency\n",

      "print round(n*100),\" = Power conversion efficiency %\"\n",

      "P_DPmax=V_CC**2/(math.pi**2*R_L);\n",

      "P_DNmax=P_DPmax;\n",

      "print round(P_DPmax,1),\"= Maximun power dissipated in each transistor (W)\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "17.9 = Supply voltage required (V)\n",

        "2.24 = Peak current drawn from each supply (A)\n",

        "32.7 = The total power supply (W)\n",

        "61.0  = Power conversion efficiency %\n",

        "6.7 = Maximun power dissipated in each transistor (W)\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex14.2:pg-1245"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 14.2 To determine quiescent current and power\n",

      "# Consider Class AB Amplifier\n",

      "V_CC=15; # (V)\n",

      "R_L=100; # (ohm)\n",

      "v_O=-10; # Amplitude of sinusoidal output voltage (V)\n",

      "I_S=10**-13; # (A)\n",

      "V_T=25*10**-3; # (V)\n",

      "B=50; # Beta value\n",

      "i_Lmax=10/(0.1*10**3); # Maximum current through Q_N (A)\n",

      "# Implies max base curent  in Q_N is approximately 2mA\n",

      "I_BIAS=3*10**-3; # We select I_BIAS=3mA in order to maintain a minimum of 1mA through the diodes\n",

      "I_Q=9*10**-3; # The area ratio of 3 yeilds quiescent current of 9mA\n",

      "P_DQ=2*V_CC*I_Q;\n",

      "print round(P_DQ*1000),\"= Quiescent power dissipation (mW)\"\n",

      "#For v_O=0V base current of Q_N is 9/51=0.18 mA\n",

      "# Leaves a current of 3-0.18=2.83mA to flow through the diodes\n",

      "I_S= (10**-13)/3; # Diodes have I_S = (1*10**-13)/3 \n",

      "V_BB=2*V_T*math.log((2.83*10**-3)/I_S);\n",

      "print round(V_BB,2),\"= V_BB (V) for v_O = 0V\"\n",

      "# For v_O=+10V, current through the diodes will decrease to 1mA\n",

      "V_BB=2*V_T*math.log((1*10**-3)/I_S);\n",

      "print round(V_BB,2),\"= V_BB (V) for v_O = +10V\"\n",

      "# For v_O=-10V , Q_N will conduct very small current thus base current is negligible\n",

      "# All of the I_BIAS(3mA) flows through the diodes\n",

      "V_BB=2*V_T*math.log((3*10**-3)/I_S);\n",

      "print round(V_BB,2),\"= V_BB (V) for v_O = -10V\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "270.0 = Quiescent power dissipation (mW)\n",

        "1.26 = V_BB (V) for v_O = 0V\n",

        "1.21 = V_BB (V) for v_O = +10V\n",

        "1.26 = V_BB (V) for v_O = -10V\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex14.3:pg-1248"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 14.3 Redesign the output stage of Example 14.2\n",

      "V_T=25*10**-3; # (V)\n",

      "I_S=10**-14; # (A)\n",

      "I_Q=2*10**-3; # Required quiescent current (A)\n",

      "# We select I_BIAS=3mA which is divided between I_R and I_C1\n",

      "# Thus we select I_R=0.5mA and I_C1=2.5mA\n",

      "V_BB=2*V_T*math.log(I_Q/10**-13);\n",

      "print round(V_BB,2),\"=V_BB (V)\"\n",

      "I_R=0.5*10**-3;\n",

      "R1plusR2=V_BB/I_R; # R1plusR2 = R_1+R_2\n",

      "I_C1=2.5*10**-3;\n",

      "V_BE1=V_T*math.log(I_C1/I_S);\n",

      "print round(V_BE1,2),\"= V_BE1 (V)\"\n",

      "R_1=V_BE1/I_R;\n",

      "print round(R_1/1000,2),\"R_1 (Kohm)\"\n",

      "R_2=R1plusR2-R_1;\n",

      "print round(R_2/1000,2),\"R_2 (Kohm)\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.19 =V_BB (V)\n",

        "0.66 = V_BE1 (V)\n",

        "1.31 R_1 (Kohm)\n",

        "1.06 R_2 (Kohm)\n"

       ]

      }

     ],

     "prompt_number": 10

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex14.4:pg-1251"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 14.4 To determine thermal resistance, junction temperature \n",

      "# Consider BJT with following  specifications\n",

      "P_D0=2; # Maximum power dissipation (W)\n",

      "T_A0=25.0; # Ambient temperature (degree celcius)\n",

      "T_Jmax=150.0; # maximum junction temperature (degree celcius) \n",

      "\n",

      "# 14.4a \n",

      "theta_JA=(T_Jmax-T_A0)/P_D0; # Thermal resistance\n",

      "print theta_JA,\"is The thermal resistance (degree celsius/W)\"\n",

      "\n",

      "# 14.4b\n",

      "T_A=50.0; # (degree celcius)\n",

      "P_Dmax=(T_Jmax-T_A)/theta_JA; \n",

      "print P_Dmax,\"is Maximum power that can be dissipated at an ambient temperature of 50 degree celsius (W)\"\n",

      "\n",

      "# 14.4c\n",

      "T_A=25.0; # (degree celcius) \n",

      "P_D=1; # (W)\n",

      "T_J=T_A+theta_JA*P_D;\n",

      "print T_J,\"is Junction temperature (degree celcius) if the device is operating at T_A=25 degree celsius and is dissipating 1W\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "62.5 is The thermal resistance (degree celsius/W)\n",

        "1.6 is Maximum power that can be dissipated at an ambient temperature of 50 degree celsius (W)\n",

        "87.5 is Junction temperature (degree celcius) if the device is operating at T_A=25 degree celsius and is dissipating 1W\n"

       ]

      }

     ],

     "prompt_number": 11

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex14.5:pg-1253"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 14.5 To determine the maximum power dissipated \n",

      "# Consider a BJT with following specifications\n",

      "T_Jmax=150; # (degree celcius)\n",

      "T_A=50; # (degree celcius)\n",

      "\n",

      "# 14.5a\n",

      "theta_JA=62.5; # (degree celcius/W)\n",

      "P_Dmax=(T_Jmax-T_A)/theta_JA;\n",

      "print round(P_Dmax,2),\"is The maximum power (W) that can be dissipated safely by the transistor when operated in free air\"\n",

      "\n",

      "#14.5b\n",

      "theta_CS=0.5; # (degree celcius/W)\n",

      "theta_SA=4; # (degree celcius/W)\n",

      "theta_JC=3.12; # (degree celcius/W)\n",

      "theta_JA=theta_JC+theta_CS+theta_SA;\n",

      "P_Dmax=(T_Jmax-T_A)/theta_JA\n",

      "print round(P_Dmax,1),\"is The maximum power (W) that can be dissipated safely by the transistor when operated at an ambient temperature of 50 degree celcius but with a heat sink for which theta_CS= 0.5 (degree celcius/W) and theta_SA = 4 (degree celcius/W) (W)\"\n",

      "\n",

      "# 14.5c\n",

      "theta_CA=0 # since infinite heat sink\n",

      "P_Dmax=(T_Jmax-T_A)/theta_JC;\n",

      "print round(P_Dmax),\"is The maximum power (W) that can be dissipated safely if an infinite heat sink is used and T_A=50 (degree celcius)\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.6 is The maximum power (W) that can be dissipated safely by the transistor when operated in free air\n",

        "13.1 is The maximum power (W) that can be dissipated safely by the transistor when operated at an ambient temperature of 50 degree celcius but with a heat sink for which theta_CS= 0.5 (degree celcius/W) and theta_SA = 4 (degree celcius/W) (W)\n",

        "32.0 is The maximum power (W) that can be dissipated safely if an infinite heat sink is used and T_A=50 (degree celcius)\n"

       ]

      }

     ],

     "prompt_number": 16

    }

   ],

   "metadata": {}

  }

 ]

}