1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
{
"metadata": {
"name": "",
"signature": "sha256:c177c52862f24e7aa2f65bd196b1696db90de567ae2d80d6061ed266557f0af1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6-Beams and bending part 3"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The deflection at the free\n",
"l = 5.;## feet\n",
"W = 150.;## lb\n",
"w = 120.;## lb. per foot run\n",
"l1 = 3.;## feet\n",
"b = 3.;## inches\n",
"d = 6.;## inches\n",
"E = 1.5*10**6;## lb/in^2\n",
"I = (1./12.)*b*d**3;## in^4\n",
"y_B1 = (W*l**3)/(3.*E*I);## feet\n",
"y_B2 = (w*l1*l1**3)/(8.*E*I) + (l-l1)*(w*l1*l1**2)/(6.*E*I);## feet\n",
"y_B = (12**3)*(y_B1+y_B2);## inches\n",
"print'%s %.4f %s'%('The deflection at the free end =',y_B,'inches')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The deflection at the free end = 0.1823 inches\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ex2-pg218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate 'Uniform distributed load\n",
"b = 4.;## inches\n",
"d = 9.;## inches\n",
"l = 12.;## feet\n",
"y_c = 1/4.;## inches\n",
"E = 1.5*10**6;## lb/in^2\n",
"I = (1/12.)*b*d**3;## in^4\n",
"W = y_c*384.*E*I/(5.*12**3.*l**3);## inches\n",
"print'%s %.d %s'%('Uniform distributed load, the beam should carry is, W =',W,'lb-wt');\n",
"\n",
"##there is an error in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Uniform distributed load, the beam should carry is, W = 2343 lb-wt\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg224"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate 'Uniform distributed load the beam should carry\n",
"b = 4.;## inches\n",
"d = 9.;## inches\n",
"l = 12.;## feet\n",
"y_c = 1/4.;## inches\n",
"E = 1.5*10**6;## lb/in^2\n",
"I = (1/12.)*b*d**3;## in^4\n",
"W = y_c*384.*E*I/(5.*12**3.*l**3);## inches\n",
"print'%s %.d %s'%('Uniform distributed load, the beam should carry is, W =',W,'lb-wt');\n",
"\n",
"##there is an error in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Uniform distributed load, the beam should carry is, W = 2343 lb-wt\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculateThe deflection for a uniformly distributed load\n",
"d = 6.;## feet\n",
"l = 60.;## feet\n",
"f = 15./2.;## tons/in^2\n",
"E = 13000.;## tons/in^2\n",
"k1 = 2.*f/(12.*d);## k1 = M_r/I \n",
"k2 = k1/(l*12./8.);##k2 = W/I\n",
"y_c = (5./384.)*k2*l**3 *12**3 /E;## inches\n",
"##If the giredr is of constant deapth and uniform strength, it bends to an arc of a circle of radius R \n",
"R = E*d*12/(2*f);## inches\n",
"delta = (l*12)**2 /(8*R);## inches\n",
"print'%s %.2f %s'%('The deflection for a uniformly distributed load on it is,delta =',delta,'inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The deflection for a uniformly distributed load on it is,delta = 1.04 inches\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The ratio of deapth to span\n",
"f = 8.;##tons/in^2\n",
"E = 12800.;## tons/in^2\n",
"k1 = 1./480.;##central deflection = k = delta/l\n",
"k2 = (5./24.)*(f/E)/k1 ;##k2 = d/l = deapth to span ratio\n",
"print'%s %.3f %s'%('The ratio of deapth to span, d/l =',k2,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ratio of deapth to span, d/l = 0.062 \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg228"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate 'A section with d and If the deapth of section is limited\n",
"w = 550.;## lb. per foot run\n",
"f = 1000.;## lb/in^2\n",
"l = 20.;## feet\n",
"d_limit = 15.;## inches\n",
"E = 1.5*10**6;## lb/in^2\n",
"##central ddeflection\n",
"delta = (1./2.);## inches\n",
"d = (5./24.)*(f/E)*20.*12./(1./(2.*20.*12.));## inches\n",
"M = w*l*l*12./8.;## lb-inches\n",
"b = M/(f*(1./6.)*d**2);## inches\n",
"print'%s %.d %s'%('A section with d =',round(d),'inches')\n",
"print'%s %.d %s'%('b =',round(b),'inches will do.')\n",
"f1 = (1./(2.*20.*12.))*(d_limit/(l*12.))*E/(5./24.);## lb/in^2\n",
"b = M/(f1*(1./6.)*d_limit**2);## inches\n",
"print'%s %.d %s'%('If the deapth of section is limited to',d_limit,'inches,then')\n",
"print'%s %.1f %s'%('f =',f1,'lb/in^2')\n",
"print'%s %.1f %s'%('b =',b,'inches');\n",
"\n",
"##tha answer is correct only, but it is approximated in the text book.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A section with d = 16 inches\n",
"b = 8 inches will do.\n",
"If the deapth of section is limited to 15 inches,then\n",
"f = 937.5 lb/in^2\n",
"b = 9.4 inches\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The position of maximum deflection occurs and The maximum deflection and The deflection at the centre\n",
"l = 20.;## feet\n",
"b = 4.;## feet\n",
"W = 5.;## tons\n",
"d = 12.;## inches\n",
"h = 5.;## inches\n",
"I_xx = 220.;## in^4\n",
"E = 13000.;## tons/in^2\n",
"a = l-b;## feet\n",
"##for maximum deflection\n",
"x = math.sqrt((a**2 + 2.*a*b)/3.);## feet\n",
"y_max = x*12**3 *((a**2 + 2.*a*b) - x**2)/(6.*E*I_xx);## inches\n",
"##for deflection at the centre\n",
"x1 = 0.5*l;## inches\n",
"y_x1 = x1*12**3 *((a*82. + 2.*a*b) - x1*82.)/(6.*E*I_xx);## inches\n",
"print'%s %.2f %s'%('The position of maximum deflection occurs at x =',x,'feet')\n",
"print'%s %.4f %s'%('The maximum deflection is, y_max =',y_max,'inches');\n",
"print'%s %.3f %s'%('The deflection at the centre,',y_x1,'inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The position of maximum deflection occurs at x = 11.31 feet\n",
"The maximum deflection is, y_max = 0.2917 inches\n",
"The deflection at the centre, 0.624 inches\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The position of the maximum deflection and the maximum deflection\n",
"d = 12.;## inches\n",
"h = 5.;## inches\n",
"l = 20.;## feet\n",
"E = 13000.; ##tons/in**2\n",
"I_xx = 220.;## in**4\n",
"W = 4.;## tons\n",
"W1 = 3.;## tons\n",
"a = 15.;## feet\n",
"b = l-a;## feet\n",
"a1 = 16.;## feet \n",
"b1 = l-a1;## feet\n",
"K1 = (-2*W1*b1*l)/(W1*b1-W*b);\n",
"K2 = (W*b*a**2 + 2*a*W*b**2 + 2*W1*b1*l**2 - W1*b1*a1**2 -2*W1*a1*b1**2 +W1*b1*l**2)/(3*(W1*b1 - W*b));\n",
"x = -0.5*K1 + math.sqrt(-K2 + 0.25*K1**2);## feet\n",
"x1 = l-x;## feet\n",
"y_max = W*b*x*1728.*(a**2 +2*a*b -x**2)/(6.*E*I_xx*l) + W1*b1*x1*1728.*(a1**2 +2.*a1*b1 -x1**2)/(6.*E*I_xx*l);## inches\n",
"print'%s %.2f %s'%('The position of the maximum deflection is, x =',x,'feet.');\n",
"print'%s %.4f %s'%('And the maximum deflection is, y_max =',y_max,'inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The position of the maximum deflection is, x = 10.26 feet.\n",
"And the maximum deflection is, y_max = 0.4488 inches\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg243"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The position of the maximum deflection and the maximum deflection\n",
"b = 18.;## inches\n",
"d = 7.;## inches\n",
"w1 = 1.;## ton per foot run\n",
"w2 = 3.;## ton per foot run\n",
"I_xx = 1149.;## in**4\n",
"E = 13000.;## tons/in**2\n",
"R_A = 0.5*b + (b/3.);## tons\n",
"R_B = 0.5*b + (2.*b/3.);## tons\n",
"##integrating M = E*I*y'', to get E*I*y' and making y' = 0;, we get maximu deflection\n",
"x = 9.18;## by trial and error method\n",
"y_derivative = -R_A*0.5*x**3 + x**4 /6. +0.5*(2./3.)*(1./b)*(1./4.)*x**5 + 469.8;\n",
"y = -R_A*0.5*x**3 /3. + x**4 /24. +0.5*(2./3.)*(1./b)*(1./(4.*5.))*x**5 + 469.8*x;\n",
"y_max = y;## inches\n",
"print'%s %.2f %s'%('The position of maximum deflection from the end A, x =',x,'inches')\n",
"print'%s %.4f %s'%('Maximum deflection, y_max =',y_max*12**3 /(E*I_xx),'inches')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The position of maximum deflection from the end A, x = 9.18 inches\n",
"Maximum deflection, y_max = 0.3164 inches\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg254"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The position of the maximum deflection and the maximum deflection and stress induced\n",
"b = 18.;## inches\n",
"d = 6.;## inches\n",
"l = 16.;## feet\n",
"W = 2.;## tons\n",
"h = 1./2.;## inches\n",
"I_xx = 841.76;## in**4\n",
"E = 13000.;## tons/in**2\n",
"P = W + math.sqrt(2.*W*h*48.*E*I_xx/(l*12.)**3 + 2.*W);## tons\n",
"M_max = P*l*12./4.;## ton-inches\n",
"Z = 2.*I_xx/b ;## in**3\n",
"f = M_max/Z ;## tons/in**2\n",
"delta = P*(l*12.)**3 /(48.*E*I_xx);## inches\n",
"print'%s %.3f %s'%('The maximum instantaneous deflection delta =',delta,'inches') \n",
"print'%s %.3f %s'%('stress induced, f =',f,'tons/in**2');\n",
"##there is an error in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum instantaneous deflection delta = 0.193 inches\n",
"stress induced, f = 7.362 tons/in**2\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg262"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Number of plates required and Number of plates required and The initial radius to which the plates must be bent\n",
"l = 3.;## feet\n",
"b = 3.;## inches\n",
"t = 3./8.;## inches\n",
"W = 1500.;## lb.\n",
"f = 12.;## tons/in**2\n",
"E = 30.*10**6;## tons/in**2\n",
"M_max = W*l*12./4. ;## lb-inches\n",
"M_r = f*(1./6.)*b*t**2 *2240.;## lb-inches\n",
"n = M_max/M_r ;## no. of plates\n",
"n = round(n+1);\n",
"f = M_max/(n*(1./6.)*b*t**2);## lb/in**2\n",
"R = E/(2.*f/t) ;## inches\n",
"delta = (l*12.)**2 /(8.*R);## inches\n",
"print'%s %.d %s'%('Number of plates required, n =',n,'');\n",
"print'%s %.4f %s'%(' The central deflection, delta =',delta,'inch.');\n",
"print'%s %.3f %s'%('The initial radius to which the plates must be bent, R =',R,'inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of plates required, n = 8 \n",
" The central deflection, delta = 0.6912 inch.\n",
"The initial radius to which the plates must be bent, R = 234.375 inches\n"
]
}
],
"prompt_number": 17
}
],
"metadata": {}
}
]
}
|