1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
{
"metadata": {
"name": "",
"signature": "sha256:b60753ad5256b26ed900efc57b1a6de06dc4217fa7384fe1bb9afe99a185fc77"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter13-Elements of reinforced concrete"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-486"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The stress induced in the concrete and steel and \n",
"b = 10.;##inches\n",
"d = 1.;##inches\n",
"h = 20.;##inches\n",
"r = 2.;##inches\n",
"M_r = 500000.;##lb-inches\n",
"m = 15.;\n",
"A_r = 4.*0.25*math.pi*d**2;##in^2\n",
"h_eff = h-r;##inches\n",
"K = m*A_r/(b*h_eff);##inches\n",
"n1 = math.sqrt((K)**2+(2*K))-K;\n",
"n = n1*h_eff;##inches\n",
"a = h_eff-(n/3);##inches\n",
"c = 2.*M_r/(b*n*a);##lb/in^2\n",
"t = (h_eff-n)*m*c/n;##lb/in^2\n",
"print'%s %.d %s'%('The stress induced in the concrete and steel, t =',t,'lb/in^2');\n",
"\n",
"##there is a minute error in the answer given in textbook.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The stress induced in the concrete and steel, t = 10643 lb/in^2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg487"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The distance of the N.A from the top edge and The safe moment of inertia and The safe moment of inertia\n",
"b = 8.;##inches\n",
"d = 7/8.;##inches\n",
"h = 18.;##inches\n",
"r = 2.;##inches\n",
"c = 750.;##lb/in^2\n",
"t_limit = 18000.;##lb/in^2\n",
"m = 8.;\n",
"h_eff = 16.;##inches\n",
"m = 18;\n",
"A_t = 3*0.25*math.pi*d**2;##in^2\n",
"K = m*A_t/(b*h_eff);##inches\n",
"n1 = math.sqrt((K)**2.+(2.*K))-K;\n",
"n = n1*h_eff;##inches\n",
"a = h_eff - (n/3.);##inches\n",
"t = m*c*(h_eff-n)/n;##lb/in^2\n",
"\n",
"if t<t_limit:\n",
" t = t;\n",
"else:\n",
" t = t_limit;\n",
"\n",
"M_r = t*A_t*a;## lb/inches\n",
"W = M_r*8./(12.*h_eff);##lb-wt\n",
"print'%s %.3f %s'%('The distance of the N.A from the top edge, n =',n,'inches.');\n",
"print'%s %.d %s'%('The safe moment of inertia is, t =',t,'lb/in^2.');\n",
"print'%s %.d %s %d %s'% ('Unifromly distributed load over the beam, W =',W,'lb-wt. or',W/16.011,'lb. per foot run');\n",
"\n",
"##there are calculation errors given in the answer in textbook.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The distance of the N.A from the top edge, n = 8.039 inches.\n",
"The safe moment of inertia is, t = 13368 lb/in^2.\n",
"Unifromly distributed load over the beam, W = 13385 lb-wt. or 836 lb. per foot run\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg488"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Area of steel reinforcement required and Corresponding stress in steel \n",
"import numpy\n",
"from numpy import roots\n",
"def quadratic(d,M_c,c_limit,b):\n",
" p = ([1 , -(d*3), + M_c*3/(0.5*c_limit*b)]);\n",
" Z = numpy.roots(p);\n",
" return Z;\n",
"\n",
"b = 12.;##inches\n",
"h = 22.;##inches\n",
"r = 2.;##inches\n",
"W = 1500.;##lb per foot run\n",
"d = h-r;##feet\n",
"l = 20.;##inches\n",
"c_limit = 700.;## lb/in^2\n",
"m = 15.;\n",
"M_c = W*20.*l*b/8.;## lb-inches\n",
"Z = quadratic(d,M_c,c_limit,b);\n",
"n = round(Z[1]);\n",
"t = m*c_limit*(d-n)/n;## lb/in62\n",
"A_t = 0.5*c_limit*b*n/t;## in^2\n",
"print'%s %.d %s'%('Area of steel reinforcement required is, A_t =',A_t,'in^2');\n",
"print'%s %.d %s'%(' Corresponding stress in steel is, t =',t,'lb/in^2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Area of steel reinforcement required is, A_t = 13 in^2\n",
" Corresponding stress in steel is, t = 4500 lb/in^2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg492"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Effective deapth\n",
"m = 15.;\n",
"t = 18000.;## lb/in^2\n",
"c = 700.;## lb/in^2\n",
"b = 12.;## inches\n",
"M = 900000.;##bending moment lb/inches\n",
"k1 = 1./((t/(m*c))+1.);##k = n/d\n",
"k2 = 1.-k1/3.;##k2 = a/d\n",
"p = 0.5*c*k1/(t);\n",
"d = math.sqrt(M/(0.5*c*b*k1*k2));##inches\n",
"A_t = p*b*d;## sq.inches\n",
"A_t_previous = 0.25*math.pi*(7/8.)**2;##section area with diameter 7/8 inches\n",
"n = A_t/A_t_previous;\n",
"print'%s %.2f %s'%('Effective deapth is d =',d,'inches');\n",
"print'%s %.3f %s'%('A_t =',A_t,'sq.inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Effective deapth is d = 25.75 inches\n",
"A_t = 2.214 sq.inches\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg492"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate the effective death\n",
"l = 20.;##feet\n",
"W = 500.;## lb per foot run\n",
"c = 750.;## lb/in^2\n",
"t = 18000.;## lb/in^2\n",
"m = 15.;\n",
"BM_max = W*l*l*12./8. ;## lb-inches\n",
"##by making the effective deapth d twice the width b\n",
"d = (BM_max/(126.*0.5))**(1/3.);##inches\n",
"b = 0.5*d;##inches\n",
"##necessary reinforcement is 0.8% of concrete section\n",
"A_t = 0.008*b*d;## in^2\n",
"print'%s %.2f %s %.2f %s'%('d =',d,'inches ,b =',b,'inches');\n",
"print'%s %.3f %s'%('A_t =',A_t,'in^2');\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"d = 16.82 inches ,b = 8.41 inches\n",
"A_t = 1.132 in^2\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg494"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate d1 and d2 and r1\n",
"W = 180.;## lb per sq.foot\n",
"l = 10.;## feet\n",
"b = 12.;##inches\n",
"c = 750.;## lb/in^2\n",
"m = 15.;\n",
"M = W*l*l*12./8.;##lb-inches\n",
"d_new = math.sqrt(M/(126.*b));##inches\n",
"A_t = 0.8*b*d_new/100.;##in^2\n",
"##using 3/8 inch rods \n",
"d1 = 3/8.;##inches\n",
"A1 = 0.25*math.pi*(d1)**2;##in^2 \n",
"r1 = A1*b/A_t;##inch\n",
"##using 1/2 inch rods \n",
"d2 = 1/2.;##inches\n",
"A2 = 0.25*math.pi*(d2)**2;##in^2 \n",
"r2 = A2*b/A_t;##inches\n",
"print'%s %.3f %s'%('d =',d_new,'inches');\n",
"print'%s %.3f %s'%('A_t =',A_t,'in^2');\n",
"print'%s %.3f %s %.2f %s'%('Using',d1,'inch rods, spacing centre to centre will be',r1,'inches');\n",
"print'%s %.2f %s %.1f %s'%('Using ',d2,' inch rods, spacing centre to centre will be ',r2,' inches');\n",
"##there are round-off errors in the answer given in textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"d = 4.226 inches\n",
"A_t = 0.406 in^2\n",
"Using 0.375 inch rods, spacing centre to centre will be 3.27 inches\n",
"Using 0.50 inch rods, spacing centre to centre will be 5.8 inches\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg495"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate foot width of slab and spacing centre to centre \n",
"l = 12.;##feet\n",
"w = 150.;## lb per sq.foot\n",
"##Live load\n",
"LL = w*l;##lb-wt\n",
"##Dead Load assuming the slab thickness to be 6 inches\n",
"t = 6.;##inches\n",
"DL = t*l*12.;##lb-wt\n",
"##total load\n",
"W = LL+DL;##lb-wt\n",
"M = W*l*12./10.;##lb-inches\n",
"d = math.sqrt(M/(12.*126.));\n",
"print'%s %.4f %s'%('d =',d,'inches');\n",
"##With about an inch to cover the slab will be 6 inch thick\n",
"A_t = 0.8*l*d/100.;## in^2\n",
"##using 1/2 inch rods \n",
"d1 = 1/2.;##inches\n",
"A1 = 0.25*math.pi*(d1)**2;##in^2 \n",
"r1 = A1*l/A_t;##inches\n",
"print'%s %.4f %s'%(' Per foot width of slab, A_t =',A_t,'in^2');\n",
"print'%s %.2f %s %.3f %s'%('Using',d1,'inch rods, spacing centre to centre will be ',r1,' inches');\n",
"##there are minute calculation errors in the answer given in textbook.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"d = 5.0370 inches\n",
" Per foot width of slab, A_t = 0.4836 in^2\n",
"Using 0.50 inch rods, spacing centre to centre will be 4.873 inches\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|