1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
{
"metadata": {
"name": "",
"signature": "sha256:efd3a63c379116e766993d1d8b2baacab12f4039280250b30fc0874f009306a1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Chapter11-Reveted joints"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg424"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The efficiency of the joint\n",
"t = 5/8.;## inch\n",
"d = 1.;## inch\n",
"p = 4.;## inches\n",
"f_t = 28.; ##tons/in^2\n",
"f_s = 20.; ##tons/in^2\n",
"f_b = 40.; ##tons/in^2\n",
"P_t = (p-d)*t*f_t;## tons\n",
"P_s = 2*2*0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = 2*d*t*f_b;##tons\n",
"P = p*t*f_t;## tons\n",
"n = min(P_t,P_s,P_b)/P ;## efficiency\n",
"print'%s %.1f %s'%('The efficiency of the joint =',n,'f')\n",
"print'%s %.1f %s'%('or',n*100,'percentage')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of the joint = 0.7 f\n",
"or 71.4 percentage\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The efficiency of first joint with required conditions\n",
"t = 1/2.;## inches\n",
"d1= 7/8.;## inches\n",
"p1 = 5/2.;## inches\n",
"d2= 9/8.;## inches\n",
"p2 = 7/2.;## inches\n",
"f_t = 8.;## tons/in^2\n",
"f_s = 6.;## tons/in^2\n",
"f_b = 10.;## tons/in^2\n",
"\n",
"P_t1 = (p1-d1)*t*f_t;## tons\n",
"P_s1 = 0.25*math.pi*d1**2 *f_s;## tons\n",
"P_b1 = d1*t*f_b;##tons\n",
"P1 = p1*t*f_t;## tons\n",
"n1 = min(P_t1,P_s1,P_b1)/P1 ;## efficiency\n",
"print'%s %.3f %s'%('The efficiency of first joint = ',n1,'')\n",
"print'%s %.1f %s'%('or =',n1*100,'percentage')\n",
"\n",
"P_t2 = (p2-d2)*t*f_t;## tons\n",
"P_s2 = 0.25*math.pi*d2**2 *f_s;## tons\n",
"P_b2 = d2*t*f_b;##tons\n",
"P2 = p2*t*f_t;## tons\n",
"n2 = min(P_t2,P_s2,P_b2)/P2 ;## efficiency\n",
"print'%s %.3f %s'%('The efficiency of second joint = ',n2,'f') \n",
"print'%s %.1f %s'%('or= ',n2*100,'percentage')\n",
"\n",
"if n2 > n1: \n",
" print(' The second joint, with its higher efficiency, is stronger');\n",
"else:\n",
" print(' The first joint, with its higher efficiency, is stronger');\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of first joint = 0.361 \n",
"or = 36.1 percentage\n",
"The efficiency of second joint = 0.402 f\n",
"or= 40.2 percentage\n",
" The second joint, with its higher efficiency, is stronger\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate 'The efficiency of the joint\n",
"t = 3/8.;## inches\n",
"p2 = 7/2.;## inches\n",
"f_t = 11/2.;## tons/in^2\n",
"f_s = 5.;## tons/in^2\n",
"f_b = 12.;## tons/in^2\n",
"d = 1.2*math.sqrt(t);## inches\n",
"##d = 0.735, say 0.75 inches\n",
"d = 0.75;## inches\n",
"P_s = 0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = d*t*f_b;##tons\n",
"P_t_limit = P_s;##tons\n",
"p_limit = P_s/(t*f_t) + d;## inches\n",
"##p_limit = 1.763, take p = 1.75\n",
"p = 1.75;## inches\n",
"n = (p-d)/p;## efficiency\n",
"print'%s %.1f %s'%('The efficiency of the joint = ',n*100,' percentage')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of the joint = 57.1 percentage\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Pitch and efficency\n",
"d = 7/8.;## inches\n",
"t = 1/2.;## inches \n",
"f_t = 6.;## tons/in^2\n",
"f_s = 5.;## tons/in^2\n",
"f_b = 10.;## tons/in^2\n",
"p_s = 2*0.25*math.pi*d**2*f_s;## tons\n",
"P_b = d*t*f_b;## tons\n",
"p_t_limit = 2*P_b/3 + d;## inches\n",
"n = (p_t_limit-d)/p_t_limit;## efficiency\n",
"print'%s %.3f %s'%('Pitch, p =',p_t_limit,' inches')\n",
"\n",
"print'%s %.1f %s'%('Efficiency = ',n,' ')\n",
"print'%s %.d %s'%('or',n*100,' percentage');\n",
"\n",
"##the answer is approximated in the textbook.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch, p = 3.792 inches\n",
"Efficiency = 0.8 \n",
"or 76 percentage\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Pitch and The efficiency of the joint \n",
"d = 6.;## feet\n",
"p = 180.;## lb/in^2\n",
"f = 6.;## tons\n",
"n = 70./100.;## efficiency\n",
"d1 = 1.;## inches\n",
"f_s = 5.;## tons/in^2\n",
"f_b = 10.;## tons/in^2\n",
"t = p*d/(2.*f*n);## inches\n",
"## t = 0.6889 inches, say 0.75 inches\n",
"t = 0.75;##inches\n",
"P_s = 2*0.25*math.pi*d1**2*f_s;## tons\n",
"P_b = d1*t*f_b;## tons\n",
"p_limit = 2*P_b/(t*f) + d1;## inches\n",
"##p_limit = 4.33 inches, make it 4 inches\n",
"p = round(p_limit);## inches\n",
"n1 = (p-d1)/p;## efficiency\n",
"print'%s %.2f %s'%('Pitch = ',p_limit,'inches')\n",
"print'%s %.d %s'%('make it',p,' inches.')\n",
"print'%s %.d %s'%(' The efficiency of the joint will be',n1*100,'percentage')\n",
"print'%s %.d %s'%('percentage aganist the assumed value of ',n*100,' percentage.')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch = 4.33 inches\n",
"make it 4 inches.\n",
" The efficiency of the joint will be 75 percentage\n",
"percentage aganist the assumed value of 70 percentage.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg433"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The number of rivets required and The efficiency of the joint and The actual stresses induce in the rivet and The tensile stress at section 11 ,22 33 44\n",
"t = 1./2.;## inches\n",
"a = 1./2.;## inches\n",
"P = 42.;## tons\n",
"d = 3/4.;## inches\n",
"f_t = 7.5;## tons/in^2\n",
"f_s = 6.;## tons/in^2\n",
"f_b = 12.;## tons/in^2\n",
"P_s = 2*0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = d*t*f_b;## tons\n",
"n = P/min(P_s,P_b);\n",
"n = round(n+1);\n",
"b1 = P/(t*f_t) + d;## inches\n",
"b = round(b1);\n",
"e = (b-d)/b;## efficiency\n",
"f_s = (P/n)/(2*0.25*math.pi*d**2) ;## tons/in^2\n",
"f_b = (P/n)/(d*t);## tons/in^2\n",
"f1 = P/(a*(b-d));## tons/in^2\n",
"f2 = (P-(P/n))/((b-2*d)*t);## tons/in^2\n",
"f3 = (P-(3.*P/n))/((b-3.*d)*t);## tons/in^2\n",
"f4 = (P-(6.*P/n))/((b-4.*d)*t);## tons/in^2\n",
"print'%s %.d %s'%('The number of rivets required, n = ',n,'');\n",
"print'%s %.2f %s %.d %s'%(' The width of the flat required, b = ',b1,'inches'and' ',b,' inches');\n",
"print'%s %.2f %s '%(' The efficiency of the joint = ',e*100,' percentage');\n",
"print'%s %.2f %s %.2f %s'%(' The actual stresses induce in the rivet are, f_s = ',f_s,' tons/in^2' and ' f_b = ',f_b ,'tons/in^2');\n",
"print'%s %.3f %s'%(' The tensile stress at section 11, f1 = ',f1,'rons/in^2');\n",
"print'%s %.3f %s'%(' The tensile stress at section 22, f2 = ',f2,' rons/in^2');\n",
"print'%s %.3f %s'%(' The tensile stress at section 33, f3 = ',f3,' rons/in^2');\n",
"print'%s %.3f %s'%(' The tensile stress at section 44, f4 = ',f4,' rons/in^2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of rivets required, n = 10 \n",
" The width of the flat required, b = 11.95 12 inches\n",
" The efficiency of the joint = 93.75 percentage \n",
" The actual stresses induce in the rivet are, f_s = 4.75 f_b = 11.20 tons/in^2\n",
" The tensile stress at section 11, f1 = 7.467 rons/in^2\n",
" The tensile stress at section 22, f2 = 7.200 rons/in^2\n",
" The tensile stress at section 33, f3 = 6.031 rons/in^2\n",
" The tensile stress at section 44, f4 = 3.733 rons/in^2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg436"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate The number of rivets required and The efficiency of the joint and The pull section at different points and The maximum possible pull which the flat will safely transmit\n",
"import math\n",
"\n",
"b = 9.;## inches\n",
"t = 3./4.;## inches\n",
"f_t = 8.;## tons/in**2\n",
"f_s = 5.;## tons/in**2\n",
"f_b = 10.;## tons/in**2\n",
"d = 7/8.;## inches\n",
"P = (b-d)*t*f_t;## tons\n",
"P_s = 2.*0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = d*t*f_b;## tons\n",
"n = P/min(P_s,P_b);\n",
"e = (b-d)/b;## efficiency\n",
"P1 = f_t*(b-d)*t;## tons\n",
"P2 = f_t*(b-2*d)*t+P_s;## tons\n",
"P3 = f_t*(b-3*d)*t+3*P_s;## tons\n",
"P4 = f_t*(b-3*d)*t+6*P_s;## tons\n",
"print'%s %.d %s'%('The number of rivets required, n = ',round(n+1),'')\n",
"print'%s %.1f %s'%(' The efficiency of the joint =',e*100,' percentage');\n",
"print'%s %.2f %s'%(' The pull at section 11, P1 = ',P1,' rons/in**2');\n",
"print'%s %.1f %s'%( 'The pull at section 22, P2 = ',P2,'rons/in**2');\n",
"print'%s %.2f %s'%(' The pull at section 33, P3 = ',P3,' rons/in**2');\n",
"print'%s %.2f %s'%(' The pull at section 44, P4 = ',P4,' rons/in**2');\n",
"if P1 == min(P1,P2,P3,P4) :\n",
" print'%s %.2f %s'%(' The maximum possible pull which the flat will safely transmit is P1 = ',P1,' tons/in^2 at section 11');\n",
"elif P2 == min(P1,P2,P3,P4):\n",
" print'%s %.1f %s'%(' The maximum possible pull which the flat will safely transmit is P2 = ',P2,' tons/in^2 at section 22'); \n",
"elif P3 == min(P1,P2,P3,P4): \n",
" print'%s %.2f %s'%('The maximum possible pull which the flat will safely transmit is P3 = ',P3,' tons/in^2 at section 33');\n",
"else:\n",
" print'%s %.2f %s'%(' The maximum possible pull which the flat will safely transmit is P4 = ',P4,' tons/in^2 at section 44'); \n",
"\n",
"\n",
"##there is a minute error in the answer given textbook.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of rivets required, n = 9 \n",
" The efficiency of the joint = 90.3 percentage\n",
" The pull at section 11, P1 = 48.75 rons/in**2\n",
"The pull at section 22, P2 = 49.5 rons/in**2\n",
" The pull at section 33, P3 = 56.29 rons/in**2\n",
" The pull at section 44, P4 = 74.33 rons/in**2\n",
" The maximum possible pull which the flat will safely transmit is P1 = 48.75 tons/in^2 at section 11\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg437"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The number of rivets required \n",
"P = 150.; ##tons\n",
"t = 3./4.;## inches\n",
"d = 1.;## inches\n",
"f_s = 6.;## tons/in**2\n",
"f_b = 12.;## tons/in**2\n",
"P_s = 0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = t*d*f_b;## tons\n",
"n = P/min(P_s,P_b);## no. of rivets required\n",
"print'%s %.2f %s %.d %s'%('The number of rivets required, n = ',n,', say ',round(n),'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of rivets required, n = 31.83 , say 32 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg440\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The minimum pitch required\n",
"l = 50.;## feet\n",
"b = 4.;## feet\n",
"P = 3.;## tons per foot run\n",
"t = 1/2.;## inches\n",
"b1 = 4.;## inches\n",
"d1 = 4.;## inches\n",
"h1 = 1/2.;## inches\n",
"d = 7/8.;## inches\n",
"f_s = 6.;## tons/in**2\n",
"f_b = 12.;## tons/in**2\n",
"P_s = 2.*0.25*math.pi*d**2 *f_s;## tons\n",
"P_b = t*d*f_b;## tons\n",
"R = P_b;## tons\n",
"F = l*P*2./d1;## tons\n",
"p_min = R*(l-0.5*b1)/F ;## inches\n",
"print'%s %.2f %s %.d %s'%('The minimum pitch required is p = ',p_min,' inches, say ',p_min,' inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum pitch required is p = 3.36 inches, say 3 inches\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg442"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The maximum shear intensity induced at any rivet\n",
"P = 2.4;## tons\n",
"e = 18.;## inches\n",
"n = 8.;##no. of rivets\n",
"d = 7/8.;## inches\n",
"h = 4.;## inches\n",
"M = P*e;## ton-inches\n",
"d1 = 2.;## \n",
"d2 = 6.;##\n",
"square_r_sum = h*((0.5*h)**2. + d2**2.) + h*((0.5*h)**2 + d1**2.);##\n",
"r = math.sqrt(40.);\n",
"F = M*r/square_r_sum;## tons\n",
"theta = math.atan(d2/d1)##radians\n",
"theta1 = theta*180./math.pi## degrees\n",
"V = (P/n) + F*math.cos(theta);## tons\n",
"H = F*math.sin(theta);## tons\n",
"R = math.sqrt(V**2 + H**2);## tons\n",
"f_s = R/(0.25*math.pi*d**2);## tons/in**2\n",
"print('The maximum shear intensity induced at any rivet is' )\n",
"print'%s %.2f %s'%('f_s = ',f_s,' tons/in**2');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum shear intensity induced at any rivet is\n",
"f_s = 2.57 tons/in**2\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|