1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
{
"metadata": {
"name": "",
"signature": "sha256:65543f2d4bb6fb1415ff8fc05c077edf5e538efef4c593534466949561fc7f05"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10-Radial pressure-cylindrical and spherical shells"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg384"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The necessary thickness of metal for seamless pipe \n",
"d = 2.;## feet\n",
"p = 250.;## lb/in^2\n",
"f = 12000.;## lb/in^2\n",
"t_limit = p*d*12/(2*f) ;## inches\n",
"print'%s %.2f %s'%('The necessary thickness of metal for seamless pipe is',t_limit,'inches');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The necessary thickness of metal for seamless pipe is 0.25 inches\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg384"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Maximum intensity of shear stress induced \n",
"l = 8.;##feet\n",
"d = 3.;## feet\n",
"t = 1/2.;## inches\n",
"p = 200.;## lb/in**2\n",
"E = 30.*10**6.;## lb/in**2\n",
"PR = 0.3;## poisson's ratio\n",
"f1 = p*d*12./(2.*t);## lb/in**2\n",
"f2 = p*d*12./(4.*t);## lb/in**2\n",
"f_s = 0.5*(f1-f2);## lb/in**2\n",
"e1 = (f1/E)-(PR*f2/E);## lb/in**2\n",
"e2 = (f2/E)-(PR*f1/E);## lb/in**2\n",
"del_d = e1*d*12.;## inches\n",
"del_l = e2*l*12.;## inches\n",
"del_V = (e2+2.*e1)*0.25*math.pi*(12*d)**2. * l*12.;## cub. inches\n",
"print'%s %.d %s'%('Maximum intensity of shear stress induced =',f_s,'lb/in**2')\n",
"\n",
"print'%s %.6f %s'%('del_d =',del_d,'inches')\n",
"print'%s %.6f %s'%('del_l = ',del_l,'inches')\n",
"print'%s %.1f %s'%('del_V =',del_V,'cub. inches')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum intensity of shear stress induced = 1800 lb/in**2\n",
"del_d = 0.007344 inches\n",
"del_l = 0.004608 inches\n",
"del_V = 44.6 cub. inches\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg385"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate Thickness of metal required\n",
"d = 30.;## inches\n",
"H = 300.;## feet\n",
"w = 62.5;\n",
"f = 2800.;\n",
"##intensity of water pressur\n",
"p = w*H/144.;## lb/in**2\n",
"t_limit = p*d/(2*f);## inches\n",
"print'%s %.4f %s'%('Thickness of metal required is',t_limit, 'inches')\n",
"\n",
"\n",
"##the answer is correct only, but it is approximated in the text book.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of metal required is 0.6975 inches\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg387"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calcualte The permissible steam pressure and circumferential stress and longitudinal sretss \n",
"d = 78.;## inches\n",
"t = 3/4.;## inches\n",
"n1 = 70/100.;## efficiency of the longitudinal riveted joint\n",
"f = 6.;## tons/in^2\n",
"n2 = 60/100.;## efficiency of the circumferential riveted joint\n",
"p = f*2240./(d/(2.*t*n1));##lb/in^2\n",
"p = round(p-1);\n",
"f1 = p*d/(2.*t);## lb/in^2\n",
"f2 = p*d/(4.*t*n2);## lb/in^2\n",
"print'%s %.d %s'%('The permissible steam pressure, p = ',p,'lb/in^2');\n",
"print'%s %.d %s'%('The circumferential stress, f1 =',f1,'lb/in^2')\n",
"print'%s %.2f %s'%('The circumferential stress, f1= ',f1/2240,'tons/in^2');\n",
"print'%s %.d %s'%('The longitudinal stress, f2 =',f2,'lb/in^2') \n",
"print'%s %.2f %s'%('The longitudinal sretss, f2 =',f2/2240,'lb/in^2')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The permissible steam pressure, p = 180 lb/in^2\n",
"The circumferential stress, f1 = 9360 lb/in^2\n",
"The circumferential stress, f1= 4.18 tons/in^2\n",
"The longitudinal stress, f2 = 7800 lb/in^2\n",
"The longitudinal stress, f2 = 3.48 lb/in^2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg389"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The thickness of the plate required\n",
"d = 4.;## feet\n",
"p = 200.;## lb/in^2\n",
"f = 15000.;## lb/in^2\n",
"n = 0.7;## efficiency\n",
"t_limit = p*d*12/(4*f*n);## inches\n",
"print'%s %.2f %s'%('The thickness of the plate required =',t_limit,'inches');\n",
"\n",
"##the answer is correct only, but it is approximated in the text book.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of the plate required = 0.23 inches\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg390"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The pressure exerted by fluid on the shell\n",
"d = 3.;## feet\n",
"t = 1/4.;## inches\n",
"del_V = 9.;## cub. inches\n",
"E = 30*10**6;## lb/in^2\n",
"PR = 0.3;## poisson's ratio\n",
"V = (math.pi/6.)*(12.*d)**3;## in^3\n",
"k = del_V/V;\n",
"f = k*E/(3.*(1.-PR));## lb/in^2\n",
"p = 4.*f*t/(12.*d);## lb/in^2\n",
"print'%s %.d %s'%('The pressure exerted by fluid on the shell, p =',p,'lb/in^2');\n",
"\n",
"##there is a minute calculation error in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The pressure exerted by fluid on the shell, p = 146 lb/in^2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg390"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calcualte the Pipe and Steel-wire of intiually due to p and finally due to p\n",
"d = 12.;## feet\n",
"t = 1/2.;## inches\n",
"d1 = 1/4.;## inches\n",
"p = 500.;## lb/in^2\n",
"E_c = 6000.;## tons/in^2\n",
"PR = 0.3;## Poisson's ratio\n",
"E_s = 13000.;## tons/in^2\n",
"f_t = 8000.;## lb/in^2\n",
"l = 8.;\n",
"P_c = l*(math.pi/64.)*f_t;## lb-wt\n",
"f_c = P_c/(2.*t);## lb/in^2\n",
"##bursting force per inch unit length\n",
"f_b = p*d;## lb-wt\n",
"f_p = (f_b + (l*0.049*PR*p*d/(4.*t))*(E_s/E_c))/(1 + (l*0.049)*E_s/E_c);## lb/in^2 \n",
"f_w = (f_p - PR*p*d/(4.*t))*E_s/E_c;## lb/in^2\n",
"\n",
"print(' Pipe Steel-wire');\n",
"print'%s %.d %s'%(' Initually,',f_c,'lb/in^2.,compr.')\n",
"print'%s %.d %s'%('Intiually',f_t,'lb/in^2., tensile')\n",
"print'%s %.d %s'%( 'Due to p, ',f_p,'lb/in^2.,tensile.')\n",
"print'%s %.d %s'%('Due to p',f_t,'lb/in^2., tensile')\n",
"print'%s %.d %s'%(' Finally, ',f_p-f_c,'lb/in^2.,tensile.')\n",
"print'%s %.d %s'%('Finally',f_w+f_t,'lb/in^2., tensile')\n",
"\n",
"##there is a calculation error in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Pipe Steel-wire\n",
" Initually, 3141 lb/in^2.,compr.\n",
"Intiually 8000 lb/in^2., tensile\n",
"Due to p, 3657 lb/in^2.,tensile.\n",
"Due to p 8000 lb/in^2., tensile\n",
" Finally, 516 lb/in^2.,tensile.\n",
"Finally 13975 lb/in^2., tensile\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg395"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate 'The maximum intensities of circumferential stresses are\n",
"d = 12.;## inches\n",
"t = 3.;## inches\n",
"p_x1 = 900.;## lb/in^2\n",
"x1 = 0.5*d;## inches\n",
"p_x2 = 0.;\n",
"x2 = 0.5*d+t;## inches\n",
"##from Lame's formulae\n",
"b = (p_x1-p_x2)/((1/x1**2)-(1/x2**2));\n",
"a = (b/x1**2)- p_x1;\n",
"f_x1 = (b/x1**2)+a;## lb/in^2\n",
"f_x2 = (b/x2**2)+a;## lb/in^2\n",
"print'%s %.d %s'%('The maximum intensities of circumferential stresses are: f_6 =',f_x1,'lb/in^2.,tensile') \n",
"print'%s %.d %s'%('The minimum intensities of circumferential stresses are: f_6f_9 =',f_x2,'lb/in^2., tensile')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum intensities of circumferential stresses are: f_6 = 2340 lb/in^2.,tensile\n",
"The minimum intensities of circumferential stresses are: f_6f_9 = 1440 lb/in^2., tensile\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg396"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# calculate 'The maximum intensities of circumferential stresses are and the outer diameter\n",
"d = 5.;## inches \n",
"p = 3.;## tons/in^2\n",
"f = 8.;## tons/in^2\n",
"x = 0.5*d;## inches\n",
"b = (p+f)/(2/x**2);\n",
"a = f-(b/x**2); \n",
"r = math.sqrt(b/a);##outer radius\n",
"t = r-0.5*d;##thickness\n",
"D = 2.*t+d;##outer diameter\n",
"print'%s %.3f %s'%('The thickness of metal necessary, t =',t,'inches');\n",
"print'%s %.1f %s'%('the outer diameter will be, D =',D,'inches');\n",
"\n",
"##the answer is correct, but it is approximated in the text book.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of metal necessary, t = 1.208 inches\n",
"the outer diameter will be, D = 7.4 inches\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg399"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# calculate The outer radius in all four cases\n",
"d = 9.;## inches\n",
"p = 5000/2240.;## lb/in**2\n",
"f = 8.;## tons/in**2\n",
"PR = 0.3;## Poisson's ratio\n",
"##(i) Maximum principal stress hypothesis:\n",
"k_limit1 = math.sqrt((f + p)/(f - p));##k_limit = r1/r2\n",
"r_limit1 = k_limit1*0.5*d;##inches\n",
"print'%s %.3f %s'%('The outer radius in case(i), r2 =',r_limit1,'inches');\n",
"##(ii) Maximum principal strain:\n",
"k_limit2 = math.sqrt(((f/p - PR)+1)/(f/p - PR -1));\n",
"r_limit2 = k_limit2*0.5*d;## inches\n",
"print'%s %.3f %s'%(' The outer radius in case(ii), r2 =',r_limit2,'inches');\n",
"##(iii) Maximum shear stress:\n",
"k_limit3 = math.sqrt(f/(2*p) /((f/(2*p)) - 1));\n",
"r_limit3 = k_limit3*0.5*d;## inches\n",
"print'%s %.3f %s'%('The outer radius in case(iii), r2 =',r_limit3,' inches');\n",
"##(iv) Maximum strain energy\n",
"K1 = (f**2 /p**2)/(2*((f**2 /(2*p**2)) - (1+PR)));\n",
"K2 = K1**2;\n",
"K3 = ((f**2 /(2*p**2)) - (1-PR))/((f**2 /(2*p**2)) - (1+PR));\n",
"k_limit4 =math. sqrt(K1+math.sqrt(K2-K3));\n",
"r_limit4 = k_limit4*0.5*d;## inches\n",
"print'%s %.3f %s'%(' The outer radius in case(iv), r2 =',r_limit4,' inches');\n",
"\n",
"##there are calculation errors in the answer given in text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The outer radius in case(i), r2 = 5.994 inches\n",
" The outer radius in case(ii), r2 = 6.163 inches\n",
"The outer radius in case(iii), r2 = 6.769 inches\n",
" The outer radius in case(iv), r2 = 6.249 inches\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# calculate hoop stress at x = 3,6 inches,x = 5 inches initially on inner tube and outer tube\n",
"r1 = 0.5*6.;## inches\n",
"r2 = 0.5*12.;## inches\n",
"r3 = 0.5*10.;## inches\n",
"p = 1500.;## lb/in**2\n",
"p_f = 12000.;## lb/in**2\n",
"##Initially, for the inner tube\n",
"b = -p/((1./r1**2.) - (1./r3**2.));\n",
"a = b/r1**2.;\n",
"f_3 = (b/r1**2.) +a;## lb/in**2\n",
"f_5 = (b/r3**2.) +a;## lb/in**2\n",
"##for the outer tube\n",
"b1 = p/((1/r3**2.)-(1/r2**2.));\n",
"a1 = b1/r2**2.;\n",
"f1_5 = (b1/r3**2.)+a1;## lb/in**2\n",
"f1_6 = (b1/r2**2.)+a1;## lb/in**2\n",
"##When the fluid pressure of 12000 lb/in**2, is admitted into the compound tube\n",
"B = p_f/((1./r1**2.)-(1/r2**2.));\n",
"A = B/(r2**2.);\n",
"f_3_ = (B/r1**2.)+A;## lb/in**2\n",
"f_5_ = (B/r3**2.)+A;## lb/in**2\n",
"f_6_ = (B/r2**2.)+A;## lb/in**2\n",
"\n",
"print('The hoop stresse are');\n",
"print'%s %.1f %s %.1f %s '%(' at x = 3 inches,x = 5 inches initially on inner tube are ',-f_3,' lb/in^2.., compressive, ',-f_5,' lb/in^2..,compressive respectively');\n",
"print'%s %.1f %s %.1f %s'%(' at x = 5 inches,x = 6 inches initially on outer tube are ',f1_5,' lb/in^2.., tensile, ',f1_6,' lb/in^2..,tensile respectively');\n",
"print'%s %.d %s %.d %s %.d %s'%(' at x = 3 inches,x = 5 inches and x = 6 inches due to fluid pressure are ',f_3_,' lb/in^2.., tensile, ',f_5_,' lb/in^2..,tensile, and',f_6_,' lb/in^2..,tensile respectively')\n",
"print'%s %.1f %s %.1f %s'%(' at x = 3 inches,x = 5 inches finally on inner tube are ',f_3_+f_3,' lb/in^2.., tensile, ',f_5_+f_5,' lb/in^2..,tensile respectively');\n",
"print'%s %.d %s %.d %s'%(' at x = 5 inches,x = 6 inches finally on outer tube are',f1_5+f_5_,' lb/in^2.., tensile, ',f1_6+f_6_,' lb/in^2.., tensile respectively');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The hoop stresse are\n",
" at x = 3 inches,x = 5 inches initially on inner tube are 4687.5 lb/in^2.., compressive, 3187.5 lb/in^2..,compressive respectively \n",
" at x = 5 inches,x = 6 inches initially on outer tube are 8318.2 lb/in^2.., tensile, 6818.2 lb/in^2..,tensile respectively\n",
" at x = 3 inches,x = 5 inches and x = 6 inches due to fluid pressure are 20000 lb/in^2.., tensile, 9760 lb/in^2..,tensile, and 8000 lb/in^2..,tensile respectively\n",
" at x = 3 inches,x = 5 inches finally on inner tube are 15312.5 lb/in^2.., tensile, 6572.5 lb/in^2..,tensile respectively\n",
" at x = 5 inches,x = 6 inches finally on outer tube are 18078 lb/in^2.., tensile, 14818 lb/in^2.., tensile respectively\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg407"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The minimum temperature to which outer tube should be heated before it can be slipped\n",
"p = 1500.;## lb/in^2\n",
"E = 30*10**6;## lb/in^2\n",
"f1_5 = 8318.;## lb/in^2\n",
"f2_5 = 3187.5;## lb/in^2\n",
"alpha = 0.0000062;## per F\n",
"r3 = 6;## inches\n",
"del_r3 = r3*(f1_5+f2_5)/E;## inches\n",
"t = ((f1_5+f2_5)/E)/(alpha);## inches\n",
"print'%s %.2f %s'%('The minimum temperature to which outer tube should be heated before it can be slipped on, t =',t,'F');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum temperature to which outer tube should be heated before it can be slipped on, t = 61.86 F\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg408"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate The hoop stresses are as under for inner tube at x=1/5 and 3 and 4.5 inches \n",
"r1 = 0.5*9.;## inches\n",
"r2 = 0.5*3.;## inches\n",
"r3 = 0.5*6.;## inches\n",
"del_r3 = 0.5*0.003;## inches\n",
"E = 13000.;## tons/in^2\n",
"k1 = r1/r3;\n",
"k2 = r2/r3;\n",
"a1 = (del_r3/r3)*E/((k1**2 +1)- (k2**2 +1)*(k1**2 -1)/(k2**2 -1));\n",
"a = a1*(k1**2 -1)/(k2**2 -1);\n",
"b1 = a1*r1**2;\n",
"b = a*r2**2;\n",
"p_ = (b/r3**2) -a;## tons/in^2\n",
"## for the inner tube\n",
"f_x1 = (b/r2**2) +a;## tons/in^2\n",
"f_x2 = (b/r3**2) +a;## tons/in^2\n",
"## for the outer tube\n",
"f_x3 = (b1/r3**2) +a1;## tons/in^2\n",
"f_x4 = (b1/r1**2) +a1;## tons/in^2\n",
"print ('The hoop stresses are as under:');\n",
"print'%s %.2f %s'%('For the inner tube, at x = 1/5 inches, f =',-f_x1,'tons/in^2., compressive')\n",
"print'%s %.2f %s'%('at x = 3 inches, f =',-f_x2,'tons/in^2.,compressive')\n",
"print'%s %.2f %s'%(' For the outer tube, at x = 3 inches, f =',f_x3,'tons/in^2., tensile')\n",
"\n",
"print'%s %.2f %s'%('at x = 4.5 inches, f =',f_x4,' tons/in^2.,tensile');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The hoop stresses are as under:\n",
"For the inner tube, at x = 1/5 inches, f = 4.06 tons/in^2., compressive\n",
"at x = 3 inches, f = 2.54 tons/in^2.,compressive\n",
" For the outer tube, at x = 3 inches, f = 3.96 tons/in^2., tensile\n",
"at x = 4.5 inches, f = 2.44 tons/in^2.,tensile\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex14-pg414"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate the thickness of the shell required\n",
"r1 = 0.5*5.;## inches\n",
"p = 5000.;## lb/in^2\n",
"f = 5.;## tons/in^2\n",
"b = (f + p/2240.)/((1/r1**3) + (2/r1**3));\n",
"a = f - (b/r1**3);\n",
"##external diameter\n",
"r = (2*b/a)**(1/3);## inches\n",
"t = r - r1;## inches\n",
"print'%s %.3f %s'%('The thickness of the shell required, t =',t,'inches');\n",
"\n",
"##the answer is approximated in the text book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of the shell required, t = -1.500 inches\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|