1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
|
{
"metadata": {
"name": "",
"signature": "sha256:b3fea044fb61246e436e589813425563571ae1bfc62fb47f12dd9ef378e27c6d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5: Stresses in Beams Basic Topics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1, page no. 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"import numpy\n",
"\n",
"#initialisation\n",
"\n",
"L = 8.0 # length of beam in ft\n",
"h = 6.0 # Height of beam in inch\n",
"e = 0.00125 # elongation on the bottom surface of the beam\n",
"y = -3.0 # Dismath.tance of the bottom surface to the neutral surface of the beam in inch\n",
"\n",
"#Calculations\n",
"r = -(y/e) # Radius of curvature\n",
"print \"radius of curvature is\", round(r), \"inch\"\n",
"k = 1/r # curvature in in-1\n",
"print \"curvature\", round(k,5), \"ft-1\"\n",
"theta = numpy.degrees(numpy.arcsin(((L*12.0)/(2.0*r)))) # angle in degree\n",
"print \"Angle of twist\", round(theta,3), \"degree\"\n",
"my_del = r*(1-math.cos(math.radians(theta))) #Deflection in inch\n",
"print \"Deflection in the beam is \", round(my_del,4), \"inch\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"radius of curvature is 2400.0 inch\n",
"curvature 0.00042 ft-1\n",
"Angle of twist 1.146 degree\n",
"Deflection in the beam is 0.48 inch\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2, page no. 315"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"d = 0.004 # thickness of wire in m\n",
"R0 = 0.5 # radius of cylinder in m\n",
"E = 200e09 # Modulus of elasticity of steel\n",
"s = 1200e06 # proportional limit of steel\n",
"\n",
"#calculation\n",
"\n",
"M = (math.pi*E*d**4)/(32*(2*R0+d)) # Bending moment in wire in N-m\n",
"print \"Bending moment in the wire is \", round(M,2), \"N-m\"\n",
"s_max = (E*d)/(2*R0+d) # Maximum bending stress in wire in Pa\n",
"print \"Maximum bending stress in the wire is %e\" %(s_max), \"Pa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bending moment in the wire is 5.01 N-m\n",
"Maximum bending stress in the wire is 7.968127e+08 Pa\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3, page no. 316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"L = 22 # Span of beam in ft\n",
"q = 1.5 # Uniform load intensity in k/ft\n",
"P = 12 # Concentrated in k\n",
"b = 8.75 # width of cross section of beam in inch\n",
"h = 27 # height of cross section of beam in inch\n",
"Ra = 23.59 # Reaction at point A\n",
"Rb = 21.41 # Reacyion at point B\n",
"Mmax = 151.6 # Maximum bending moment\n",
"\n",
"#calculation\n",
"\n",
"S = (b*h**2)/6 # Section modulus\n",
"s = (Mmax*12)/S # stress in k\n",
"st = s*1000 # Tensile stress\n",
"print \"Maximum tensile stress in the beam\", round(st), \"psi\"\n",
"sc = -s*1000 # Compressive stress\n",
"print \"Maximum compressive stress in the beam\", round(sc), \"psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum tensile stress in the beam 1711.0 psi\n",
"Maximum compressive stress in the beam -1711.0 psi\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4, page no. 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"q = 3200.0 # Uniform load intensity in N/m\n",
"b = 0.3 # width of beam in m\n",
"h = 0.08 # Height of the beam in m\n",
"t = 0.012 # thickness of beam in m\n",
"Ra = 3600.0 # Reaction at A in N\n",
"Rb = 10800.0 # Reaction at B in N\n",
"Mpos = 2025.0 # Moment in Nm\n",
"Mneg = -3600.0 # Moment in Nm\n",
"\n",
"#calculation\n",
"y1 = t/2.0\n",
"A1 = (b-2*t)*t \n",
"y2 = h/2\n",
"A2 = h*t \n",
"A3 = A2 \n",
"c1 = ((y1*A1)+(2*y2*A2))/((A1)+(2*A2))\n",
"c2 = h - c1 \n",
"Ic1 = (b-2*t)*(t**3)*(1.0/12.0)\n",
"d1 = c1-(t/2.0)\n",
"Iz1 = (Ic1)+(A1*(d1**2))\n",
"Iz2 = 956600e-12\n",
"Iz3 = Iz2 \n",
"Iz = Iz1 + Iz2 + Iz3 # Moment of inertia of the beam cross section\n",
"\n",
"# Section Modulli\n",
"S1 = Iz / c1 # for the top surface\n",
"S2 = Iz / c2 # for the bottom surface\n",
"\n",
"# Maximum stresses for the positive section\n",
"st = Mpos / S2 \n",
"print \"Maximum tensile stress in the beam in positive section is\", st, \"Pa\"\n",
"sc = -Mpos / S1 \n",
"print \"Maximum compressive stress in the beam in positive section is\", sc, \"Pa\"\n",
"\n",
"# Maximum stresses for the negative section\n",
"snt = -Mneg / S1 \n",
"print \"Maximum tensile stress in the beam in negative section is\", snt, \"Pa\"\n",
"snc = Mneg / S2 \n",
"print \"Maximum compressive stress in the beam in negative section is\", snc, \"Pa\"\n",
"\n",
"# Conclusion\n",
"st_max = st\n",
"sc_max = snc"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum tensile stress in the beam in positive section is 50468539.6422 Pa\n",
"Maximum compressive stress in the beam in positive section is -15157118.8248 Pa\n",
"Maximum tensile stress in the beam in negative section is 26945989.0219 Pa\n",
"Maximum compressive stress in the beam in negative section is -89721848.2528 Pa\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exampe 5.5, page no. 325"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"L = 12 # Length of beam in ft\n",
"q = 420 # Uniform load intensity in lb/ft\n",
"s = 1800 # Allowable bending stress in psi\n",
"w = 35 # weight of wood in lb/ft3\n",
"\n",
"#calculation\n",
"M = (q*L**2*12)/8 # Bending moment in lb-in\n",
"S = M/s # Section Modulli in in3\n",
"\n",
"# From Appendix F\n",
"q1 = 426.8 # New uniform load intensity in lb/ft\n",
"S1 = S*(q1/q) # New section modulli in in3\n",
"\n",
"# From reference to appendix F, a beam of cross section 3*12 inch is selected\n",
"print (\"Beam of crosssection 3*12 is sufficient\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Beam of crosssection 3*12 is sufficient\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6, page no. 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#initialisation\n",
"P = 12000 # Lataeral load at the upper end in N\n",
"h = 2.5 # Height of post in m\n",
"Mmax = P*h # Maximum bending moment in Nm\n",
"\n",
"#calculation\n",
"# Part (a) : Wood Post\n",
"s1 = 15e06 # Maximum allowable stress in Pa\n",
"S1 = Mmax/s1 # Section Modulli in m3\n",
"d1 = ((32.0*S1)/math.pi)**(1.0/3.0) # diameter in m\n",
"print \"the minimum required diameter d1 of the wood post is\", round(d1,3), \"m\"\n",
"\n",
"# Part (b) : Alluminium tube\n",
"s2 = 50e06 # Maximum allowable stress in Pa\n",
"S2 = Mmax/s2 # Section Modulli in m3\n",
"d2 = (S2/0.06712)**(1.0/3.0) # diameter in meter.....(1) \n",
"print \"minimum required outer diameter d2 of the aluminum tube is\", round(d2,3),\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the minimum required diameter d1 of the wood post is 0.273 m\n",
"minimum required outer diameter d2 of the aluminum tube is 0.208 m\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.7, page no. 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"q = 2000.0 # Uniform load intensity in lb/ft\n",
"s = 18000.0 # Maximum allowable load in Psi\n",
"Ra = 18860.0 # Reaction at point A\n",
"Rb = 17140.0 # Reaction at point B\n",
"\n",
"#calculation\n",
"x1 = Ra/q # Distance in ft from left end to the point of zero shear\n",
"Mmax = (Ra*x1)-((q*(x1**2))/2.0) # Maximum bending moment in lb-ft\n",
"S = (Mmax*12.0)/s # Section Modulli in in3\n",
"\n",
"# Trial Beam\n",
"Ra_t = 19380.0 # Reaction at point A\n",
"Rb_t = 17670.0 # Reaction at point B\n",
"\n",
"#in Python the value for x1 differes by some points and hence the subsequent results differ\n",
"x1_t = Ra_t/q # Distance in ft from left end to the point of zero shear\n",
"Mmax_t = (Ra_t*x1_t)-((q*(x1_t**2))/2.0) # Maximum bending moment in lb-ft\n",
"S_t = (Mmax_t*12.0)/s # Section Modulli in in3\n",
"# From table E beam 12*50 is selected \n",
"print \"Beam of crosssection 12*50 is selected with section modulli\", round(S_t,2), \"in^3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Beam of crosssection 12*50 is selected with section modulli 62.6 in^3\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.8, page 329"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#initialisation \n",
"g = 9810 # Specific weight of water in N/m3\n",
"h = 2 # Height of dam in m\n",
"s = 0.8 # Dismath.tance between square cross section in m\n",
"sa = 8e06 # Maximum allowable stress in Pa\n",
"\n",
"#Calculations\n",
"b = ((g*(h**3)*s)/sa)**(1.0/3.0) # Dimension of croossection in m\n",
"\n",
"#Result\n",
"print \"the minimum required dimension b of the posts\", round(b,3), \"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the minimum required dimension b of the posts 0.199 m\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.11, page no. 341"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"L = 3 # Span of beam in ft\n",
"q = 160 # Uniform load intensity in lb/in\n",
"b = 1 # Width of cross section\n",
"h = 4 # Height of cross section\n",
"\n",
"# Calculations from chapter 4\n",
"Mc = 17920 # Bending moment in ld-in\n",
"Vc = -1600 # Loading in lb\n",
"I = (b*(h**3))/12.0 # Moment of inertia in in4\n",
"sc = -(Mc*1)/I # Compressive stress at point C in psi\n",
"Ac = 1*1 # Area of section C in inch2\n",
"yc = 1.5 # dismath.tance between midlayers od section C and cross section of beam\n",
"Qc = Ac*yc # First moment of C cross section in inch3\n",
"tc = (Vc*Qc)/(I*b) # Shear stress in Psi\n",
"print \"Normal stress at C\", sc, \"psi\"\n",
"print \"Shear stress at C\", tc, \"psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Normal stress at C -3360.0 psi\n",
"Shear stress at C -450.0 psi\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.12, page no. 342"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#initialisation\n",
"s = 11e06 # allowable tensile stress in pa\n",
"t = 1.2e06 # allowable shear stress in pa\n",
"b = 0.1 # Width of cross section in m\n",
"h = 0.15 # Height of cross section in m\n",
"a = 0.5 # in m\n",
"\n",
"#Calculations\n",
"P_bending = (s*b*h**2)/(6.0*a) # Bending stress in N\n",
"P_shear = (2*t*b*h)/3.0 # shear stress in N\n",
"Pmax = P_bending # Because bending stress governs the design\n",
"\n",
"#Result\n",
"print \"the maximum permissible value Pmax of the loads\", Pmax, \"N\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the maximum permissible value Pmax of the loads 8250.0 N\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.13, page no. 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#initialisation\n",
"d2 = 4 # Outer diameter in inch\n",
"d1 = 3.2 # Inner diameter in inch\n",
"r2 = d2/2 # Outer radius in inch\n",
"r1 = d1/2 # inner radius in inch\n",
"P = 1500 # Horizontal force in lb\n",
"\n",
"#calculation\n",
"# Part (a)\n",
"t_max = ((r2**2+(r2*r1)+r1**2)*4*P)/(3*math.pi*((r2**4)-(r1**4))) # Mximum shear stress in Psi\n",
"print \"Maximum shear stress in the pole is\", round(t_max), \"psi\"\n",
"\n",
"# Part (b)\n",
"d0 = math.sqrt((16*P)/(3*math.pi*t_max)) # Diameter of solid circular cross section in meter\n",
"print \"Diameter of solid circular cross section is \", round(d0,2), \"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum shear stress in the pole is 658.0 psi\n",
"Diameter of solid circular cross section is 1.97 m\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.14, page no. 351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#initialisation\n",
"b = 0.165 # in m\n",
"h = 0.320 # in m\n",
"h1 = 0.290 # in m\n",
"t = 0.0075 # in m\n",
"V = 45000.0 # Vertical force in N\n",
"\n",
"#calculation\n",
"I = (1.0/12.0)*((b*(h**3))-(b*(h1**3))+(t*(h1**3))) # Moment of inertia of the cros section\n",
"t_max = (V/(8.0*I*t))*((b*(h**2))-(b*(h1**2))+(t*(h1**2))) # Maximum shear stress in Pa\n",
"t_min = ((V*b)/(8*I*t))*(h**2-h1**2) # Minimum shear stress in Pa\n",
"T = ((t*h1)/3.0)*(2*t_max + t_min) # Total shear force in Pa\n",
"t_avg = V/(t*h1) # Average shear stress in Pa\n",
"\n",
"#Result\n",
"print \"Maximum shear stress in the web is\", round(t_max,2), \"Pa\"\n",
"print \"Minimum shear stress in the web is\", round(t_min,2), \"Pa\"\n",
"print \"Total shear stress in the web is\", round(T,2), \"N\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum shear stress in the web is 20985785.26 Pa\n",
"Minimum shear stress in the web is 17359517.46 Pa\n",
"Total shear stress in the web is 43015.04 N\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.15, page no. 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"V = 10000 # Vertical shear force in lb\n",
"b = 4 # in inch\n",
"t = 1 # in inch\n",
"h = 8 # in inch\n",
"h1 = 7 # in inch\n",
"\n",
"#calculation\n",
"A = b*(h-h1) + t*h1 # Area of cross section \n",
"Qaa = ((h+h1)/2.0)*b*(h-h1) + (h1/2.0)*(t*h1) # First moment of cross section\n",
"c2 = Qaa/A # Position of neutral axis in inch\n",
"c1 = h-c2 # Position of neutral axis in inch\n",
"Iaa = (b*h**3)/3.0 - ((b-t)*h1**3)/3.0 # Moment of inertia about the line aa\n",
"I = Iaa - A*c2**2 # Moment of inertia of crosssection\n",
"Q1 = b*(h-h1)*(c1-((h-h1)/2.0)) # First moment of area above the line nn\n",
"t1 = (V*Q1)/(I*t) # Shear stress at the top of web in Psi\n",
"Qmax = (t*c2)*(c2/2.0) # Maximum first moment of inertia below neutral axis\n",
"t_max = (V*Qmax)/(I*t) # Maximum Shear stress in Psi\n",
"\n",
"#Result\n",
"print \"Shear stress at the top of the web is\", round(t1), \"psi\"\n",
"print \"Maximum Shear stress in the web is\", round(t_max), \"Psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Shear stress at the top of the web is 1462.0 psi\n",
"Maximum Shear stress in the web is 1762.0 Psi\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.16, page no. 357"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"#initialisation\n",
"\n",
"Af = 40*180 # Area of flange in mm2\n",
"V = 10500 # Shear force acting on cross section\n",
"F = 800 # Allowable load in shear\n",
"df = 120 # Dismath.tance between centroid of flange and neutral axis in mm\n",
"\n",
"#calculation\n",
"Q = Af*df # First moment of cross section of flange\n",
"I = (1.0/12.0)*(210*280**3) - (1.0/12.0)*(180*200**3) # Moment of inertia of entire cross section in mm4\n",
"f = (V*Q)/I # Shear flow\n",
"s = (2*F)/f # Spacing between the screw\n",
"\n",
"#Result\n",
"print \"The maximum permissible longitudinal spacing s of the screws is\", round(s,1), \"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum permissible longitudinal spacing s of the screws is 46.6 mm\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.17, page no. 362"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"#initialisation\n",
"L = 60 # Length of beam in inch\n",
"d = 5.5 # dismath.tance from the point of application of the load P to the longitudinal axis of the tube in inch\n",
"b = 6 # Outer dimension of tube in inch\n",
"A = 20 # Area of cross section of tube in inch\n",
"I = 86.67 # Moment of inertia in in4\n",
"P = 1000 # in lb\n",
"theta = 60 # in degree\n",
"Ph = P*math.sin(math.radians(60)) # Horizontal component\n",
"Pv = P*math.cos(math.radians(60)) # Vertical component\n",
"\n",
"#Calculations\n",
"M0 = Ph*d # Moment in lb-in\n",
"y = -3 # Point at which maximum tensile stress occur in inch\n",
"N = Ph # Axial force\n",
"M = 9870 # Moment in lb-in\n",
"st_max = (N/A)-((M*y)/I) # Maximum tensile stress in Psi\n",
"yc = 3 # in inch\n",
"M1 = 5110 # moment in lb-in\n",
"sc_left = (N/A)-((M*yc)/I) # Stress at the left of point C in Psi\n",
"sc_right = -(M1*yc)/I # Stress at the right of point C in Psi\n",
"sc_max = min(sc_left,sc_right) # Because both are negative quantities\n",
"\n",
"#Result\n",
"print \"The maximum compressive stress in the beam is\", round(sc_max), \"psi\"\n",
"print \"The maximum tensile stress in the beam is\", round(st_max), \"psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum compressive stress in the beam is -298.0 psi\n",
"The maximum tensile stress in the beam is 385.0 psi\n"
]
}
],
"prompt_number": 26
}
],
"metadata": {}
}
]
}
|