summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_R._C._Hibbeler/Chapter8.ipynb
blob: 366c18a1e23fe686f35b408cb41dc75c00c1139a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8:Combined Loadings"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1 Page No 408"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "di=4*12          #inch, diameter\n",
      "ri=di/2.0        #Radius\n",
      "t=0.5           #inch, thickness\n",
      "sigma=20.0     #Ksi,  stress\n",
      "\n",
      "#Calculation\n",
      "#Cylindrical Pressure Vessel\n",
      "p1=(t*sigma)/ri #sigma = pr/t\n",
      "#Spherical Vessel\n",
      "p2=(2*t*sigma)/(ri) #sigma = pr/2t\n",
      "\n",
      "#Display\n",
      "print\"The maximum internal pressure the cylindrical pressure vessel can sustainis\",round(p1*1000,0),\"psi\"\n",
      "print\"The maximum internal pressure a spherical pressure vessel can sustain is\",round(p2*1000,0),\"psi\"\n",
      "\n",
      "   "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum internal pressure the cylindrical pressure vessel can sustainis 417.0 psi\n",
        "The maximum internal pressure a spherical pressure vessel can sustain is 833.0 psi\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2 Page No 414"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine stress at point B and C\n",
      "\n",
      "#Given\n",
      "P = 15000.0     #N, force,\n",
      "a = 40.0        #mm, length\n",
      "b = 100.0       #mm, breadth\n",
      "\n",
      "#CAlculation\n",
      "#Normal Force\n",
      "A = a*b         #Area\n",
      "sigma = P/A\n",
      "#Bending Moment\n",
      "I = (a*b**3)/12.0 #I = (1/12)*bh**3\n",
      "M = P*(b/2.0)  \n",
      "c = b/2.0\n",
      "sigma_max =(M*c)/I\n",
      "\n",
      "#Superposition\n",
      "x = ((sigma_max-sigma)*b)/((sigma_max+sigma)+(sigma_max-sigma))\n",
      "sigma_b = (sigma_max-sigma)\n",
      "sigma_c = (sigma_max + sigma)\n",
      "\n",
      "#Display\n",
      "print\"The state of stress at B  is(tensile)\",sigma_b,\"psi\"\n",
      "print\"The state of stress at C is (compressive)\",sigma_c,\"psi\"\n",
      "\n",
      "\n",
      " \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The state of stress at B  is(tensile) 7.5 psi\n",
        "The state of stress at C is (compressive) 15.0 psi\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3 Page No 415"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the stress\n",
      "\n",
      "#Given:\n",
      "ri =24       #inch, radius\n",
      "t = 0.5      #inch\n",
      "ro = ri+t\n",
      "sp_wt_water = 62.4    #lb/ft**3\n",
      "sp_wt_steel = 490     #lb/ft**3\n",
      "l_a = 3               #m depth of point A from the top\n",
      "\n",
      "#Internal Loadings:\n",
      "import math\n",
      "v = (math.pi*l_a)*((ro/12.0)**2 - (ri/12.0)**2)\n",
      "W_st = sp_wt_steel*v\n",
      "p = sp_wt_water*l_a #lb/ft**2,Pascal's Law\n",
      "p_=p*0.0069         #psi\n",
      "#Circumferential Stress:\n",
      "sigma1 = (p_*ri)/t\n",
      "#Longitudinal Stress:\n",
      "A_st = (math.pi)*(ro**2 - ri**2)\n",
      "sigma2 = W_st/A_st\n",
      "\n",
      "#Display:\n",
      "print\"The state of stress at A (Circumferential)\",round(sigma1,0),\"KPa\"\n",
      "print\"The state of stress at A (Longitudinal) \",round(sigma2,1),\"KPa\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The state of stress at A (Circumferential) 62.0 KPa\n",
        "The state of stress at A (Longitudinal)  10.2 KPa\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4 Page No 417"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the state of stress\n",
      "\n",
      "#Given\n",
      "y_c = 125/1000.0 #m,  length\n",
      "x_c = 1.5        #m\n",
      "y_b = 1.5         #m\n",
      "x_b = 6.0         #m\n",
      "udl = 50.0       #kN/m, force per unit length\n",
      "l_udl = 2.5      #m\n",
      "l = 250/1000.0   #m\n",
      "width = 50/1000.0 #m \n",
      "\n",
      "\n",
      "#Internal Loadings:\n",
      "N = 16.45 #kN\n",
      "V = 21.93 #kN\n",
      "M = 32.89 #kNm\n",
      "\n",
      "#Stress Components:\n",
      "#Normal Force:\n",
      "A = l*width\n",
      "sigma1 = N/(A*1000)\n",
      "#Shear Force:\n",
      "tou_c = 0\n",
      "#Bending Moment:\n",
      "c = y_c\n",
      "I = (1/12.0)*(width*l**3)\n",
      "sigma2 = (M*c)/(I*1000)\n",
      "#Superposition:\n",
      "sigmaC = sigma1+sigma2\n",
      "\n",
      "#Display:\n",
      "print\"The stress due to normal force at C   \",round(sigma1,2),\"MPa\"\n",
      "print\"The stress due to shear force at C    \",tou_c,\"MPa\"\n",
      "print\"The stress due to bending moment at C \",round(sigma2,1),\"MPa\"\n",
      "print\"The resultant stress at C             \",round(sigmaC,1),\"MPa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The stress due to normal force at C    1.32 MPa\n",
        "The stress due to shear force at C     0 MPa\n",
        "The stress due to bending moment at C  63.1 MPa\n",
        "The resultant stress at C              64.5 MPa\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5 Page No 418"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given:\n",
      "r = 0.75*10       #mm, radius\n",
      "f_x =40000        #N, force along x\n",
      "f_y =800          #N force along y\n",
      "l1 = 0.8         #mm\n",
      "l2 = 0.4        #mm\n",
      "\n",
      "#Stress Components:\n",
      "#Normal Force:\n",
      "A1 =l1*l2\n",
      "sigma1 = f_x/A1   #stress = P/A\n",
      "\n",
      "#Bending Moment:\n",
      "M_y1 = 8000        #N\n",
      "c1 = l2/2.0\n",
      "I1 = (1/12.0)*(l1*l2**3)\n",
      "sigma_A1 = (M_y1*c1)/I1 \n",
      "M_y2 = 16000        #N\n",
      "c2 = l2\n",
      "I2 = (1/12.0)*(l2*l1**3)\n",
      "sigma_A2 = (M_y2*c2)/I2 \n",
      "\n",
      "#Resultant:\n",
      "res_normal= -sigma1-sigma_A1-sigma_A2\n",
      "\n",
      "#Display:\n",
      "\n",
      "print\"The stress due to normal force at A   \",sigma1/1000,\"KPa\"\n",
      "print\"The stress due to bending moment 8KN at A  \",sigma_A1/1000,\"KPa\"\n",
      "print\"The stress due to bending moment 16KN at A  \",sigma_A2/1000,\"KPa\"\n",
      "print\"The resultant normal stress component at A \",res_normal/1000,\"KPa\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The stress due to normal force at A    125.0 KPa\n",
        "The stress due to bending moment 8KN at A   375.0 KPa\n",
        "The stress due to bending moment 16KN at A   375.0 KPa\n",
        "The resultant normal stress component at A  -875.0 KPa\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7 Page No 420"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Stress at A\n",
      "\n",
      "#Given:\n",
      "P = 500        #lb, load\n",
      "r=0.75         #inch, radius\n",
      "#Stress Components:\n",
      "\n",
      "#Normal Force:\n",
      "import math\n",
      "A = math.pi*r**2\n",
      "sigma = P/A\n",
      "\n",
      "#Bendng Moments:\n",
      "M_x =7000     #lb\n",
      "cy = r\n",
      "Ix = (1/4.0)*math.pi*(r**4) \n",
      "sigma_max_1 = (M_x*cy)/Ix   \n",
      "\n",
      "M_y = P*l_bc/2.0\n",
      "cx = l_bc/2.0\n",
      "Iy = (1/12.0)*(l_ab*l_bc**3) #I = (1/12)*(bh**3)\n",
      "sigma_max_2 = (M_y*cx)/Iy #sigma = My/I\n",
      "#Superposition\n",
      "sigmaf=round(sigma/1000,3)+round(sigma_max_1/1000,1)\n",
      "\n",
      "#Display:\n",
      "print\"The normal stress at corner A \",round(sigma/1000,3),\"ksi\"\n",
      "print\"The normal stress at point A for Bending Moment \",round(sigma_max_1/1000,1),\"ksi\"\n",
      "print\"The normal stress at point A for Superimposition \",round(sigmaf,1),\"ksi\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The normal stress at corner A  0.283 ksi\n",
        "The normal stress at point A for Bending Moment  21.1 ksi\n",
        "The normal stress at point A for Superimposition  21.4 ksi\n"
       ]
      }
     ],
     "prompt_number": 50
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8 Page No 421"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the state of stress at point A\n",
      "\n",
      "#Given\n",
      "r=0.75           #radius,inch\n",
      "V=800             #Forca, lb\n",
      "\n",
      "#Calculation\n",
      "#shear force\n",
      "import math\n",
      "Q=(4*r/(3*math.pi))*(0.5*(math.pi*r**2))\n",
      "Ix=(1/4.0)*math.pi*(r**4) \n",
      "tau=V*Q/(Ix*2*r)\n",
      "#Since point A is on neutral axis\n",
      "sigmaA=0\n",
      "T=11200           #lb inch, force \n",
      "Iy=(1/2.0)*math.pi*(r**4) \n",
      "sigma_a=T*r/Iy\n",
      "#Superimposition\n",
      "sigmayzA=tau+sigma_a\n",
      "\n",
      "\n",
      "#Result\n",
      "print\"The stress for shear stress distribution is\",round(tau/1000,3),\"ksi\"\n",
      "print\"The stress for Bending moment is\",sigmaA,\"ksi\"\n",
      "print\"The stress for torque\",round(sigma_a/1000,2),\"ksi\"\n",
      "print\"The stress for Superimposition \",round(sigmayzA/1000,1),\"ksi\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The stress for shear stress distribution is 0.604 ksi\n",
        "The stress for Bending moment is 0 ksi\n",
        "The stress for torque 16.9 ksi\n",
        "The stress for Superimposition  17.5 ksi\n"
       ]
      }
     ],
     "prompt_number": 67
    }
   ],
   "metadata": {}
  }
 ]
}