1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
{
"metadata": {
"name": "",
"signature": "sha256:9e6efed33049beac69942b90d39a9e8444a663ad0d711d98275d388c059ec74c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter11:Additional Beam Topics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11.1, Page No:394"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V=1000 #Force acting on he section in lb\n",
"t=0.5 #Thickness in inches\n",
"#Dimensions\n",
"d=8 #Depth of the section in inches\n",
"wf=12 #Width of the flange in inches\n",
"wbf=8 #Width of the bottom flange in inches\n",
"\n",
"#Calculations\n",
"y_bar=((d*t*0)+wbf*t*4+wf*t*8)/(d*t+wbf*t+wf*t) #Location of Neutral Axis in inches\n",
"I=d*t*y_bar**2+t*d**3*12**-1+d*t*(d*t-y_bar)**2+wf*t*(8-y_bar)**2 #Moment of Inertia in in^4\n",
"\n",
"#Top Flange\n",
"q1=V*t*t*wf*(8-y_bar)*I**-1 #Shear flow in lb/in\n",
"#Bottom Flange\n",
"q2=V*t*t*d*y_bar*I**-1 #Shear Flow in lb/in\n",
"#Web\n",
"qB=2*q1 #Shear Flow in lb/in\n",
"qF=2*q2 #Shear Flow in lb/in\n",
"\n",
"#Max Shear Flow\n",
"qMAX=qB+V*t*(8-y_bar)**2*0.5*I**-1 #Maximum Shear Flow in lb/in\n",
"\n",
"#Result\n",
"print \"The Maximum Shear Flow is\",round(qMAX),\"lb/in\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Maximum Shear Flow is 133.0 lb/in\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11.2, Page No:395"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V=1000 #Shear Force in lb\n",
"#Rest ALL DATA is similar to previous problem\n",
"\n",
"#Calcualtions\n",
"I=t*wf**3*12**-1+t*d**3*12**-1 #Moment of Inertia\n",
"\n",
"#Part 1\n",
"q1=V*t*t*wf*3*I**-1 #Shear Flow in lb/in\n",
"q2=V*t*t*d*2*I**-1 #Shear FLow in lb/in\n",
"V1=2*3**-1*q1*wf #Shear force carried in lb\n",
"V2=2*3**-1*q2*d #Shear force carried in lb\n",
"\n",
"#Part 2\n",
"e=8*V2*V**-1 #Eccentricity in inches\n",
"\n",
"#Result\n",
"print \"The Shear Force carried by Flanges is\"\n",
"print \"Top Flange=\",round(V1,1),\"lb Bottom Flange=\",round(V2,1),\"lb\"\n",
"print \"The eccentricity is\",round(e,3),\"in\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Shear Force carried by Flanges is\n",
"Top Flange= 771.4 lb Bottom Flange= 228.6 lb\n",
"The eccentricity is 1.829 in\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11.3, Page No:403"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"#Variable Decleration\n",
"M=32 #Moment in kN.m\n",
"Iy=4.73*10**6 #Moment of inertia in y-axis in mm^4\n",
"Iz=48.9*10**6 #Moment of inertia in z-axis in mm^4\n",
"Sy=64.7*10**3 #Sectional Modulus in y-axis in mm^3\n",
"Sz=379*10**3 #Sectional Modulus in z-axis in mm^3\n",
"theta=16.2 #Angle between moment and z-axis in degrees\n",
"\n",
"#Calculations\n",
"#Part 1\n",
"alpha=np.arctan((Iz*Iy**-1)*tan(theta*pi*180**-1))*180*pi**-1 #Angle between NA and z-axis in degrees\n",
"\n",
"#Part 2\n",
"My=-M*np.sin(theta*pi*180**-1) #Bending Moment in y in kN.m\n",
"Mz=-M*np.cos(theta*pi*180**-1) #Bending Moment in z in kN.m\n",
"\n",
"sigma_max=My*Sy**-1+Mz*Sz**-1 #Largest Bedning Stress in MPa\n",
"\n",
"#Result\n",
"print \"The angle between the Neutral Axis and Z-Axis is\",round(alpha,1),\"degrees\"\n",
"print \"The maximum Bending Moment is\",abs(round(sigma_max*10**6)),\"MPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The angle between the Neutral Axis and Z-Axis is 71.6 degrees\n",
"The maximum Bending Moment is 219.0 MPa\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11.4, Page No:403"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"A=4.75 #Area in inches^2\n",
"Iy_dash=6.27 #Moment of inertia in in^4\n",
"Iz_dash=17.4 #Moment of inertia in in^4\n",
"ry=0.87 #Radius of Gyration in inches\n",
"tan_theta=0.44\n",
"P=1 #Force in kips\n",
"L=48 #Length in inches\n",
"y_dash_B=-4.01 #Y coordinate of point B in inches\n",
"z_dash_B=-0.487 #Z coordinate of point B in inches\n",
"\n",
"#Calcualtions\n",
"theta=np.arctan(tan_theta) #Angle in radians\n",
"Iy=A*ry**2 #Moment of inertia in y in in^4\n",
"Iz=Iy_dash+Iz_dash-Iy #Moment of inertia in y in in^4\n",
"\n",
"#Part 1\n",
"alpha=arctan(Iz*Iy**-1*tan_theta)*180*pi**-1 #Angle in radians\n",
"beta=alpha-(theta*180*pi**-1) #Angle in degrees\n",
"\n",
"#Part 2\n",
"M=P*L*4**-1 #Moment in kip.in\n",
"My=M*np.sin(theta) #Moment in y in kip.in\n",
"Mz=M*np.cos(theta) #Moment in z in kip.in\n",
"\n",
"y_B=y_dash_B*np.cos(theta)+z_dash_B*np.sin(theta) #Y coordinate in inches\n",
"z_B=z_dash_B*np.cos(theta)-y_dash_B*np.sin(theta) #Z coordinate in inches\n",
"\n",
"#Maximum Bending Stress\n",
"sigma_max=My*z_B*Iy**-1-Mz*y_B*Iz**-1 #Maximum Bedning Stress in ksi\n",
"\n",
"#Result\n",
"print \"The angle of inclination of the Neutral axis to the z-axis is\",round(beta,1),\"degrees\"\n",
"print \"The maximum Bedning Stress is\",round(sigma_max,2),\"ksi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The angle of inclination of the Neutral axis to the z-axis is 44.1 degrees\n",
"The maximum Bedning Stress is 3.69 ksi\n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11.5, Page No:412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"A1=4 #Area in in^2\n",
"A2=6 #Area in in^2\n",
"r1=7.8 #Radius in inches\n",
"r2=14.8 #Radius in inches\n",
"t=0.5 #Thickness in inches\n",
"d=4 #Depth in inches\n",
"sigma_w=18 #Maximum allowable stress in kips\n",
"\n",
"#Calculations\n",
"A=A1+A2 #Area in in^2\n",
"r_bar=(A1*(r1+t)+A2*(r2+d))*(A1+A2)**-1 #Centroidal Axis in inches\n",
"#Simplfying the computation\n",
"a=(r1+2*t)/r1\n",
"b=r2/(r1+t*2)\n",
"integral=d*math.log(a)+2*t*math.log(b) #\n",
"R=A/integral #Radius of neutral Surface in inches\n",
"\n",
"#Maximum Stress\n",
"#Answers are in variable terms hence not computable\n",
"\n",
"P=sigma_w/0.7847 #Maximum Allowable load in kips\n",
"\n",
"#Result\n",
"print \"The maximum allowable load is\",round(P,1),\"kips\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum allowable load is 22.9 kips\n"
]
}
],
"prompt_number": 58
}
],
"metadata": {}
}
]
}
|