summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter09.ipynb
blob: ac59e6fcf6415ec57e62527cc33924d13ab2a2bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "metadata": {
  "name": "",
  "signature": "sha256:19ebf66d9da8e61964dee3081a6c3e2bb440c25ec82a0b4b2dc44b82d335cf92"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter09:Composite Beams"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9.1, Page No:346"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "n=20 #Modular Ratio\n",
      "sigma_wd=8*10**6 #Maximum bending stress in wood in Pa\n",
      "sigma_st=120*10**6 #Maximum bending stress in steel in Pa\n",
      "\n",
      "#Cross Sectional Details\n",
      "Awd=45 #Area of wood in mm^2\n",
      "y_wd=160 #Neutral Axis of from bottom of the wooden section in mm\n",
      "Ast=15 #Area of steel in mm^2\n",
      "y_st=5 #Neutral Axis of the Steel section in mm\n",
      "#Dimensions\n",
      "ww=150 #width of wooden section in mm\n",
      "dw=300 #depth of wooden section in mm\n",
      "ws=75 #width of steel section in mm\n",
      "ds=10 #depth of steel section in mm\n",
      "\n",
      "#Calculations\n",
      "y_bar=(Awd*y_wd+Ast*y_st)*(Ast+Awd)**-1 #Location of Neutral axis from the bottom in mm\n",
      "#Moment of inertia \n",
      "I=(ww*dw**3*12**-1)+(ww*dw*(y_wd-y_bar)**2)+(n*ws*ds**3*12**-1)+(n*ws*ds*(y_bar-y_st)**2) #mm^4\n",
      "c_top=dw+ds-y_bar #Distance from NA to top fibre in mm\n",
      "c_bot=y_bar #Distance from NA to bottom fibre in mm\n",
      "\n",
      "#The solution will be in different order \n",
      "M1=sigma_wd*I*10**-12*c_top**-1 #Maximum Bending Moment in N.m\n",
      "M2=sigma_st*I*10**-12*c_bot**-1 #Maximum Bending Moment in N.m\n",
      "M=min(M1,M2) #Maximum allowable moment in N.m\n",
      "\n",
      "#Result\n",
      "print \"The Maximum Allowable moment that the beam can support is\",round(M,1),\"kN.m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Maximum Allowable moment that the beam can support is 25.8 kN.m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9.2, Page No:351"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "dw=8 #Depth of wooden section in inches\n",
      "da=0.4 #Depth og aluminium section in inches \n",
      "w=2 #Width of the section in inches\n",
      "n=40*3**-1 #Modular Ratio\n",
      "Ewd=1.5*10**6 #Youngs modulus of wood in psi\n",
      "Eal=10**7 #Youngs Modulus of aluminium in psi\n",
      "V_max=4000 #Maximum shear in lb\n",
      "b=24 #Inches\n",
      "L=72 #Length in inches\n",
      "P=6000 #Load on the beam in lb\n",
      "\n",
      "#Calculations\n",
      "I=w*dw**3*12**-1+2*(n*w*da**3*12**-1+n*da*4.2**2) #Moment of Inertia in in^4\n",
      "\n",
      "#Part 1\n",
      "Q=(w*dw*0.5)*2+(n*da)*(dw*0.5+da*0.5) #First Moment in in^3\n",
      "tau_max=V_max*Q*I**-1*w**-1 #Maximum Shear Stress in psi\n",
      "\n",
      "#Part 2\n",
      "delta_mid=(P*b)*(48*Ewd*I)**-1*(3*L**2-4*b**2)\n",
      "\n",
      "#Result\n",
      "print \"The maximum shear stress allowable is\",round(tau_max),\"psi\"\n",
      "print \"The deflection at the mid-span is\",round(delta_mid,4),\"in\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum shear stress allowable is 281.0 psi\n",
        "The deflection at the mid-span is 0.0968 in\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9.3, Page No:356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Variable Decleration\n",
      "b=300 #Breadth in mm\n",
      "d=500 #Depth in mm\n",
      "Ast=1500 #Area of steel in mm^2\n",
      "n=8 #Modular Ratio\n",
      "M=70*10**3 #Bending Moment in N.m\n",
      "\n",
      "#Calculations\n",
      "#Let the LHS be C\n",
      "C=2*n*Ast*b**-1*d**-1 #The LHS computation\n",
      "h=np.roots([d**-2,C*d**-1,-C])\n",
      "#Taking only real root\n",
      "h=h[1] #mm\n",
      "\n",
      "sigma_co_max=(2*M)/(b*h*(d-h*3**-1)) #Maximum Compressive Stress in GPa\n",
      "sigma_st_max=M/((d-h*3**-1)*Ast) #Maximum Stress in Steel in GPa\n",
      "#Result\n",
      "print \"The maximum stress in compression is\",round(sigma_co_max*10**3,2),\"MPa\"\n",
      "print \"The maximum stress in streel is\",round(sigma_st_max*10**3,1),\"MPa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum stress in compression is 6.39 MPa\n",
        "The maximum stress in streel is 104.8 MPa\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9.4, Page No:356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "sigma_co_w=12 #Maximum stress in compression in MPa\n",
      "sigma_st_w=140 #Maximum stress in steel in MPa\n",
      "M=90 #Moment in kN.m\n",
      "n=8 #Modular Ratio \n",
      "\n",
      "#Calculations\n",
      "#h=0.4068d\n",
      "#bd^2=0.04266\n",
      "b=(0.04266/(1.5**2))**0.3333 #Breadth in m \n",
      "d=1.5*b #Depth in m\n",
      "h=0.4068*d #Height in m\n",
      "\n",
      "#Area of steel\n",
      "Ast=((M*10**3)/((d-h*3**-1)*sigma_st_w*10**3))*10**3 #Area of steel in mm^2\n",
      "\n",
      "#Result\n",
      "print \"The dimensions of the beam are\"\n",
      "print \"b=\",round(b*1000),\"mm and d=\",round(d*1000),\"mm\"\n",
      "print \"Area of steel=\",round(Ast),\"mm^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dimensions of the beam are\n",
        "b= 267.0 mm and d= 400.0 mm\n",
        "Area of steel= 1859.0 mm^2\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9.5, Page No:357"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Variable Decleration\n",
      "A1=75*10**3 #Area 1 in mm^2\n",
      "A3=19.20*10**3 #Area 3 in m^2\n",
      "w=750 #Width in mm\n",
      "w1=350 #Width in mm\n",
      "d=444.45 #Depth in mm\n",
      "sigma_co_w=12*10**6 #Maximum Permissible Bending stress in concrete in Pa\n",
      "sigma_st_w=140*10**6 #Maximum Permissible Bending stress in steel in Pa\n",
      "n=8 #Modular Ratio\n",
      "\n",
      "#Calculations\n",
      "#After simplfying the equation we get the following \n",
      "H=np.roots([200,-200**2+A1+A3,-A1*50+100**2*200-600*A3])\n",
      "h=max(H) #Depth of NA in mm\n",
      "#Moment Of Inertia\n",
      "I=w*h**3*3**-1-(w1*(h-100)**3*3**-1)+A3*d**2 #Moment of inertia in mm^4\n",
      "\n",
      "M1=sigma_co_w*I*h**-1*(10**-3)**4*10**3 #Largest Bending Moment in concrete in N.m\n",
      "M2=sigma_st_w*I*(n*d)**-1*(10**-3)**4*10**3 #Largest Bending Moment in Steel in N.m\n",
      "M=min(M1,M2) #Largest Bending Moment that can be supported safely in N.m\n",
      "#Result\n",
      "print \"The largest Bending Moment that can be supported is\",round(M*10**-3,1),\"kN.m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The largest Bending Moment that can be supported is 185.6 kN.m\n"
       ]
      }
     ],
     "prompt_number": 27
    }
   ],
   "metadata": {}
  }
 ]
}