1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
{
"metadata": {
"name": "",
"signature": "sha256:b494877451d53f8b0ca30d008c3144520923dfdb33c6562fbcdeab1b4ca2b7ce"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter08:Stresses due to Combined Loading"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Examlple 8.8.1, Page No:275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"p=125 #Pressure in psi\n",
"r=24 #Radius of the vessel in inches\n",
"t=0.25 #Thickness of the vessel in inches\n",
"E=29*10**6 #Modulus of Elasticity in psi\n",
"v=0.28 #poisson ratio\n",
"\n",
"#Calcualtions\n",
"#Part 1\n",
"sigma_c=p*r*t**-1 #Circumferential Stress in psi\n",
"sigma_l=sigma_c/2 #Longitudinat Stress in psi\n",
"e_c=E**-1*(sigma_c-(v*sigma_l)) #Circumferential Strain using biaxial Hooke's Law \n",
"delta_r=e_c*r #Change in the radius in inches\n",
"\n",
"#Part 2\n",
"sigma=(p*r)*(2*t)**-1 #Stress in psi\n",
"e=E**-1*(sigma-(v*sigma)) #Strain using biaxial Hooke's Law\n",
"delta_R=e*r #Change inradius of end-cap in inches\n",
"\n",
"#Result\n",
"print \"Part 1 Answers\"\n",
"print \"Stresses are sigma_c=\",round(sigma_c),\"psi and sigma_l=\",round(sigma_l),\"psi\"\n",
"print \"Change of radius of cylinder=\",round(delta_r,5),\"in\"\n",
"print \"Part 2 Answers\"\n",
"print \"Stresses are sigma=\",round(sigma),\"psi\"\n",
"print \"Change in radius of end cap=\",round(delta_R,5),\"in\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Part 1 Answers\n",
"Stresses are sigma_c= 12000.0 psi and sigma_l= 6000.0 psi\n",
"Change of radius of cylinder= 0.00854 in\n",
"Part 2 Answers\n",
"Stresses are sigma= 6000.0 psi\n",
"Change in radius of end cap= 0.00358 in\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.2, Page No:280"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"#Variable Decleration\n",
"P=40 #Force in kN\n",
"b=0.050 #Width in m\n",
"h=0.040 #Depth in m\n",
"\n",
"#Calculations\n",
"#Part 1\n",
"A=b*h #Area in m^2\n",
"I=(b*h**3)*12**-1 #Moment of inertia in m^4\n",
"c=h*0.5 #m\n",
"sigma_max=(P*A**-1)+(P*c**2*I**-1) #Maximum stress in MPa\n",
"sigma_min=(P*A**-1)-(P*c**2*I**-1) #Minimum stress in MPa\n",
"\n",
"#Result\n",
"print \"The Maximum and Minimum Stress are\"\n",
"print \"Max=\",sigma_max/1000,\"MPa and Min=\",sigma_min/1000,\"MPa\"\n",
"\n",
"#Plotting\n",
"x=[20,0,-20]\n",
"S=[-sigma_min/1000,0,sigma_max/1000]\n",
"plt.plot(S,x)\n",
"plt.ylabel(\"Distance from Neutral Axis in mm\")\n",
"plt.xlabel(\"Stress in MPa\")\n",
"plt.title(\"Stress Distribution Diagram\")\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Maximum and Minimum Stress are\n",
"Max= 80.0 MPa and Min= -40.0 MPa\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvcZXPd//HX20gIIWEcMiJKySlC4kIHSnXfv25FinBX\n7gqdI9WMuh+Vu8MdKZ1Q6UdRuE11y+HniiSFcYgkRVKMU045z7x/f6x1zezZcx323tde1157X+/n\n47Efs9dae6312Xtm9md/vt/v+i7ZJiIiYjTL9DqAiIiorySJiIgYU5JERESMKUkiIiLGlCQRERFj\nSpKIiIgxJUnEwJF0gqSPd+lYz5H0kCSVy8OSDu7Gscvj/UzS27p1vDbPvZ+kn/fi3NE/kiRiEUk7\nSfqVpPsl3Svpl5JeUm57u6RLahDjrZIekfSgpH9IulTSu0a+xAFs/4ft/2zxWLuN9xrbt9le2Ysv\nKHL56CT2OZJOaTr+a2yfMtY+nZL0HUmPl5/Tg5Kuk/QZSas0nPv/2n51t88dgyVJIgAovzx+AhwL\nrAasCxwNPN7GMabi35OBvWyvAjwH+BzwUeDEDo+lsTZKWrajCOvBwDHl57QGcCCwPXCppBWrPHGf\nf27RJEkiRmwC2PYPXXjM9vm2r5P0AuAEYIey6eU+WPRr9YSyyeRhYEjSOpJ+LOkuSX+WdOjICSRt\nJ+kKSQ9IulPSF8v1y0v6vqR7yurgN5LWnChg2w/Zngu8GThA0mYNcX26fL6GpJ+Ux71X0sUqnEKR\nZOaW7+lDkmZJWijpIEl/AS6QtEG5rvH/ysaSLi/fx9mSVivPNSTpr40xltXK7pL2AI4E3lyeb165\nfVHzVRnXx8t95kv67sgv/4bY9pf0F0l3S/rYBB+Rys/pCdtXAK8HnkWRMJaqDiUdK+m28n1dIWmn\nhm0rlPHcJ+kGSR9pfK9lzB+RdC3wkKQZko6QdHNZyVwv6V8aXv/2sgr8Uvl3c7OkHSUdWMYwX9L+\nE7y/mAJJEjHiD8CC8gt2j5EvPgDbvwcOAS4rm15Wb9hvX+DTtlcCLgPmAvOAdYDdgfdJelX52mOB\n/7b9TOC5wA/L9QcAqwDrAasD7wIebTVw278FbgdePrKKxU1CHwT+SvFrek3gyDIJvg24jaIqWdn2\nFxoOuTPwfODVLF1pCNif4ot2JvAUcNx44RUh+lzgM8APyvNtNUqsB1J8FkMUn89KwPFNx3sZRULf\nHfikpOePc+4lA7EfBs5n8efU7DfAFhSV5KnAGZKWK7fNpkiqGwKvBN7K0s1u+wB7AqvaXgDcDOxU\nVjNHA9+XtFbD67cDrqH4Oz8NOB3YGtioPP7xVVc9MbEkiQCKX+XAThT/8b8F3CXpfxp+0Y/WLGPg\nbNuXlcsvBtaw/Z+2n7J9C/Btii8PgCeA50law/Yjtn/TsP5ZwPPKL/B5ZTzt+DvFl02zJyi+zGfZ\nXmD70haONcf2o7ZHa2oz8D3bN9h+BPgE8CZJYzZbNRDjNG8B+wFftH2r7X9SVB77NFUxR9t+3Pa1\nFF+wW7Rw3kZ3MPrnNNJH8Q/bC21/CXg6sGm5eW/gM7YfsP03ioTf+F4MHGf7byOfm+0f2b6zfH46\n8EfgpQ373GL7u2V/z+kUPyw+ZftJ2+dT/N1t3Ob7iy5LkohFbN9o+0Db6wMvovhP++UJdru94fkG\nwDpl88E/JP2D4otuJNEcTPEr+Pdlk9Jry/WnAD8HfiDpb5KOUfvt2usB9zUsj3yBfZ7iF+15kv4k\n6aMtHOuvbWy/DXgaRaUyWTOBvzQde1mg8df3nQ3PHwGe0eY51gXuHW1D2eR2g4qBC/8Ansni97UO\nS77v25c6QNPnVjaNzWv4t/Aiih8DI+Y3PH8UwPbdTetWauE9RYWSJGJUtv8AfJfiPzaMPaKncf1t\nFL8OV2t4rGJ7r/KYN9t+i+1nA8cAP5K0Qll1fMr2C4Edgb0omnRaImlbii+xX47yPh62/SHbG1G0\nyX9A0q5tvKfRPKfp+ZPAPcA/gUXNI5JmAM9u47h/B2Y1HfsplvwybccS55O0EvAKYKlRapJeDnwY\n2Nv2qrZXAx5gcbK9A1i/YZf1Wdqi80naAPgm8B5g9fJ4v2P8SipqKEkiAJC0qaQPSFq3XF6for9h\npClpPrCepKc17tZ0mN9QdFp+pOzonCHpRVo8jPatkka+NB+g+FJZKGlXSZuXX6oPUXzpLhgv3PJ4\nq0jai6I9+xTb1zfHJWkvSRuXzUEPlsdd2PCeNmrl82k691slvaBsL/8UcEbZZHITsLyk15Sf08cp\nmmxG3AnMGqdp6jTg/WUn9Uos7sNYOMbrl3ivo6wf+ZyeLmkb4GyKKuLkUV6/MkVCukfScpI+SdFP\nNOJ04EhJq5b/Rt7L+EnvGeX2e4BlJB3I4h8c0UeSJGLEQxTtxZerGKl0GXAtRccvwIXA9cCdku4q\n1y1xzUD5ZbYXsCXwZ+Buil+TI182rwZ+J+kh4L+Bfcr267WAMygSxw3AMEUT1FjmSnqQonI5Evgi\n5YidUeLamKKz9iHgV8BXbf+i3PZZ4ONlc8gHGvZt5qbn3wO+Q/HrejngsPL9PwC8m6If5nbgYZZs\ngjmj/PNeSVeMcp6TKN73xRSf3yPAoQ3bJ4qtef1Hys/pHoqq8LfAjrYfbXjNyP7nlo+bgFspmnpu\nazjep8r3dAtwXvlenhjj3Ni+geLv5TKK5Pgilqz0RrveJDe3qSH16qZD5S/V71G0Vxv4pu3jJK1O\nMeplA4p/rG+yfX9PgoyIUUn6D4r/m7tO+OLoa72sJJ4E3l+2Q28PvEfFePwjgPNtb0Lx6/WIHsYY\nEYCktSW9TNIykjYFPgCc1eu4ono9SxK277R9dfn8YeD3FCMvXk9RGlP++S+jHyEiptBywNcp+nUu\npOjf+FpPI4op0bPmpiWCkGYBv6Bot7ytHAlB2cF338hyRERMrZ53XJejOH4MHN58AVU5YqT3WSwi\nYprq6URc5TDBH1MMXzy7XD1f0tq275Q0E7hrlP2SOCIiOmC7rWtVelZJlE1JJwI32G68qvccivlr\nKP88u3lfANu1f8yePbvnMSTOah8332x23tnsuKO58cb6xtkvn2e/xtkPMdqd/bbuZXPTyygm8dq1\nvHR/noqZMj8HvFLSTcBu5XJErSxcCF/5Crz0pfCGN8DFF8Omm068X0S/6Vlzk+1fMnaSesVUxhLR\njj/9CQ46CJ56Ci69NMkhBlvPO64H2dDQUK9DaEnibE2r1UOv42xV4uyefoixU7UYAtsuSe7HuKN/\nNVYPJ52U6iH6kyTcLx3XEf0gfQ8x3eVetBFjSN9DRCqJiKWkeohYLJVERINUDxFLSiURQaqHiLGk\nkohpL9VDxNhSScS0leohYmKpJGJaSvUQ0ZpUEjGtpHqIaE8qiZg2Uj1EtC+VRAy8VA8RnUslEQMt\n1UPE5KSSiIGU6iGiO1JJxMBJ9RDRPakkYmCkeojovlQSMRBSPURUI5VE9LVUDxHV6mklIekk4LXA\nXbY3L9fNAf4duLt82ZG2z+1NhFFnqR4iqtfrSuJkYI+mdQa+ZHur8pEEEUtI9RAxdXpaSdi+RNKs\nUTa1dQ/WmD5SPURMrV5XEmM5VNI1kk6UtGqvg4neS/UQ0Rt1HN10AvCp8vmngS8CBze/aM6cOYue\nDw0NMTQ0NAWhRS+keojozPDwMMPDw5M6hmxP/CJpNeA5wIyRdbavmtSZFx97FjB3pOO6lW2S3Erc\n0d8WLoSvfhWOPho+9jE4/HCYMWPi/SJidJKw3VZz/oSVhKRPA28H/gwsbNi0a1vRtUjSTNt3lIv/\nClxXxXmi3lI9RNTDhJWEpJuAF9l+ousnl04DdgHWAOYDs4EhYEuKUU63AO+yPb9pv1QSAyrVQ0R1\nKqkkgOuB1Si+xLvK9r6jrD6p2+eJ/pDqIaJ+Whnd9BlgnqTzJM0tH+dUHVhMHxm5FFFfrVQS3wM+\nB/yOxX0SaeuJrkj1EFFvrSSJh20fV3kkMa2k7yGiP7SSJC6R9FngHODxkZXdGgIb00+qh4j+0cro\npmFGaV6yXckQ2FZkdFN/SvUQ0VuVjG6yPdRxRBGlVA8R/amVi+lWA/YHZjW83rYPqzCuGBCpHiL6\nWyt9Ej8DLgOupRjdJDK6KVqQ6iGi/7XSJ3GV7a2nKJ6WpE+i3lI9RNRTVVdcnyrpncBclhzddF+b\n8cU0kOohYrC0csX1Y8DngV8DV5aPK6oMKvpPrpqOGEytVBIfBDayfU/VwUR/SvUQMbhaqST+CDxa\ndSDRf1I9RAy+ViqJR4CrJV3E4j6JDIGd5lI9REwPrSSJs8vHyHCiDIGdxjJyKWJ6aen2pXWTIbC9\n0Vg9nHRSqoeIftPJENhW+iRimkvfQ8T01UpzU0xj6XuImN5SScSoUj1EBLQ2wd+mwIdYeoK/3SZ7\nckknAa8F7rK9ebludeCHwAbArcCbbN8/2XNF61I9RMSIViqJM4CrgI8DH254dMPJwB5N644Azre9\nCXBhuRxTINVDRDRrZYK/K21vU1kA0ixgbkMlcSOwi+35ktYGhm0/v2mfjG7qsoxcihh8VY1umivp\nPZJmSlp95NFhjK1Yy/b88vl8YK0KzzXtpXqIiPG0Mrrp7RQXz32oaf2GXY+miW1LGrVkmDNnzqLn\nQ0NDDA0NVR3OwEnfQ8RgGx4eZnh4eFLH6PnFdGM0Nw3ZvlPSTOCiNDd1V66ajpieuno/CUm7275Q\n0hsZZRoO22d2EGMrzgEOAI4p/zy7ovNMS6keIqId4/VJ7Fz++boxHpMm6TTgV8Cmkv4q6UDgc8Ar\nJd0E7FYuxySl7yEiOtHz5qZOpLmpPRm5FBGQuZuiSaqHiJiszN00oNL3EBHdkEpiwKR6iIhuamXu\npjcB59p+UNIngK2BT9u+qvLooi2pHiKi21qpJD5RJoidgN2BE4ETqg0r2pHqISKq0kqfxILyz72A\nb9n+iaRPVxhTtCHVQ0RUqZVK4m+Svgm8GfippOVb3C8qlOohIqZCK7PAPoNiOu9rbf+xnCpjc9vn\nTUWAY8Q0ra+TyHUPEdGJrl4nIWmV8unTgYuAe8vZXx8Hrug4yuhYqoeImGrj9UmcRnHXuKsYZe4m\npmAW2FgsfQ8R0QuZlqPmMmNrRHRLV2eBbTjowbZPbFheFjjK9tEdxBhtSPUQEb3WyiilV0j6maR1\nJL0IuAxYZaKdonPpe4iIupiwkrC9r6R9gGuBfwL72f5l5ZFNU6keIqJOJqwkJG0CHAacCdwGvLUc\nFhtdlOohIuqolSuuzwHea/sCScsA7wd+C2xWaWTTSKqHiKirVvokXmr7AgDbC21/EfiXasOaHlI9\nRETdtdIn8QCAJFFM8LcvxTxOa1Ub2mBL9RAR/aCVPokdJB0H/AU4G7gEeEHVgQ2qVA8R0U/GvJhO\n0meBNwJ/Bk6nSBBX2p6SK60l3Qo8SDEL7ZO2t2vY1pcX02XOpYjopW7f4/rfKRLECcD3bd83meA6\nYGDI9laNCaIfpXqIiH41Xp/ETOCVwD7A8ZKGgRUkPc32k1MRHNBWxquj9D1ERD8bs5Kw/ZTt/7V9\nAPA84H+AS4HbJZ06BbEZuEDSFZLeMQXn66pUDxExCFq5TgLbjwE/An5UTiE+FUNgX2b7DknPBs6X\ndKPtS0Y2zpkzZ9ELh4aGGBoamoKQWpPqISLqYHh4mOHh4Ukdoy9mgZU0G3i4vEajth3XmbE1Iuqs\nkllge0HSisAM2w+VU4C8Cqj1rLOpHiJiENX1XtVrAZdIuhq4HPhJL2+XOp70PUTEIBuzkpD0RorO\n49FKE9s+s6qgbN8CbFnV8bsl1UNEDLrxmptex+i3LR1RWZKou/Q9RMR00Rcd18162XGdq6Yjol9V\n1nEtaS+KqcGXH1ln+1PthdffUj1ExHTUyj2uvwGsAOwGfAvYm6IzedpI30NETFetjG7a0fb+wH22\njwa2B6bF12RGLkXEdNdKc9Oj5Z+PSFoXuBdYu7qQ6iHVQ0REa5XEXEmrAZ8HrgRuBU6rMqheSvUQ\nEbHYuKObynta72D70nJ5eWB52/dPUXxjxVXJ6KaMXIqIQdbt+0lgeyHw1Yblx3qdIKqQ6iEiYnSt\n9ElcIOnfgB/Xcla9SUrfQ0TE2FrpkziE4valT0h6qHw8WHFclUv1EBExsQkrCdsrTUUgUynVQ0RE\nayasJCRd2Mq6fpDqISKiPePNArsCsCLwbEmrN2xaBVi36sC6LdVDRET7xqsk3gVcQXF19ZUNj3OA\n46sPrTtSPUREdG7CWWAlHWr7K1MUT0tavU4i1z1ERCxW1SywD0rav3ml7e+1c6KplBlbIyK6o5Uk\nsS2Lbz40MhvsVUAtk0T6HiIiuqftmw5JWhX4oe1XVxNSSzEs1dyU6iEiYnyV3XSoySPAhh3s1zJJ\newBfBmYA37Z9zHivT/UQEVGNVq6TmNvw+CnwB+CsqgKSNINi9NQeFHfD21fSC0Z7bUYuRURUq5VK\n4ovlnwYWAH+x/dfqQmI74GbbtwJI+gHwBuD3jS9K9RARUb0JKwnbwxT3kHia7V8C90paucKY1gUa\nk9DtjHLxXqqHiIjqtXKP63cC7wBWBzYC1gNOAHavKKaWetIfemgOJ58Ml18OBx00xKtfPVRROBER\n/Wl4eJjh4eFJHaOVi+muoWgC+rXtrcp119nefFJnHvt82wNzbO9RLh8JLGzsvJbk+fPNmWfCGWfA\nlVfCa14De+8Ne+wBK6xQRWQREf2t6zcdKj1u+/GGkyxLi7/2O3QF8DxJsyQtB7yZYiqQJay5Jhxy\nCFx4Idx0E+y8Mxx/PMycCW95C5x1Fjz66FLHjoiINrRSSXweuB/YH3gv8G7gBttHVRaUtCeLh8Ce\naPuzTdvHnJbjrrtIhRERMYpOKolWksQM4GDgVeWqn1Ncu9Czu9S1OndTEkZExGKVJIk6ajVJNErC\niIjprqtJQtJFY+xjANu7tRde93SSJBolYUTEdNTtJPGShsWRF20PfBS4y/ZLlt5rakw2STRKwoiI\n6aKy5iZJQ8DHKWaB/U/b/9tRhF3SzSTRKAkjIgZZ15NEOdHeUcATFMlhrCaoKVVVkmiUhBERg6bb\nzU2/BZ4NfAG4rFy96MW2r+owzkmbiiTRKAkjIgZBt5PEcPl01BfY3rWt6LpoqpNEoySMiOhXGQI7\nxZIwIqKfJEn0UBJGRNRdkkRNJGFERB0lSdRQEkZE1EWV10lsAcxi8f0nbPvMtiPskn5KEo2SMCKi\nl6qa4O9kYHPgemDhyHrbB3YSZDf0a5JolIQREVOtqiRxA/DCOn0rD0KSaJSEERFToaok8V3gv2xf\nP5ngumnQkkSjJIyIqEpVSWKI4s5wdwIjd6iz7Rd3EmQ3DHKSaJSEERHdVFWS+BPwfuB3LNkncWsH\nMXbFdEkSjZIwImKyqkoSl9neYVKRddl0TBKNkjAiohNVJYmvAasCcylmg4UMga2NJIyIaFVVSeI7\n5dMlXljVEFhJc4B/B+4uVx1p+9ym1yRJjCIJIyLGMxBXXEuaDTxk+0vjvCZJYgJJGBHRrJMksUwL\nB11f0lmS7i4fP5a0XudhtqStNxFLW3NNOOQQuPBCuOkm2HlnOP54mDkT3vIWOOssePTRXkcZEXU3\nYZIATqYYArtO+ZhbrqvSoZKukXSipFUrPtfAS8KIiE610idxje0tJlrX1kml84G1R9l0FPBrFvdH\nfBqYafvgpv09e/bsRctDQ0MMDQ11Gs60lSapiME2PDzM8PDwouWjjz66ko7r/0dROZxK0Qy0D3Cg\n7d3bDbhdkmYBc21v3rQ+fRJdloQRMfiqGt20AXA8sH256lfAobZv6yjKiQKSZtq+o3z+fmBb229p\nek2SRIWSMCIGU9eThKRlge/a3m+ywbUckPQ9YEuKIbe3AO+yPb/pNUkSUyQJI2JwVFVJ/BLY3fbj\n475wCiVJ9EYSRkR/qypJnAI8n2KE0yPlao93HUPVkiR6Lwkjov9UlSRmU3RYN19xfXTbEXZJkkS9\nJGFE9IeuJglJp9h+m6T32f5yVyLskiSJ+krCiKivbieJG4BXAOcCQ83bbd/XQYxdkSTRH5IwIuql\n20niMOA/gOcCf2/abNvP7SjKLkiS6D9JGBG9V1WfxNdtHzKpyLosSaK/JWFE9MZAzALbiiSJwZGE\nETF1kiSiryVhRFQrSSIGRhJGRPdVliTKifY2tn2BpBWBZW0/2FGUXZAkMb0kYUR0R1Ud1+8E3gGs\nbnsjSZsAJ0zFLLDjxJQkMU0lYUR0rqokcQ2wHfBr21uV665rnr57KiVJBCRhRLSrktuXAo83Tu5X\nzgybb+joudxxL6J6rVQSnwfuB/YH3gu8G7jB9lHVhzdmTKkkYkypMCJGV1Vz0wzgYOBV5aqfA9/u\n5bd0kkS0KgkjYrGqksQzgMdsLyiXZwBPt/3IuDtWKEkiOpGEEdNdVUnicoqbDj1cLq8M/Nz2jh1H\nOklJEjFZSRgxHVWVJK62veVE66ZSkkR0UxJGTBdVjW76p6RtGk7yEiBjRmJgZJRUxNhaqSS2BX4A\n3FGumgm82fYVHZ9U2huYQ3Fb1G1tX9Ww7UjgIGABcJjt80bZP5VEVC4VRgyaKqflWA7YlOL6iD/Y\nfrKzEBcd7/nAQuAbwAdHkoSkzYBTgW2BdYELgE1sL2zaP0kiplQSRgyCKpPEjsCGwKIL6Wx/r5Mg\nm457EUsmiSOBhbaPKZfPBebY/nXTfkkS0TNJGNGvKumTkPR94AvAy4CXUPzK37ajCCe2DnB7w/Lt\nFBVFRG2M14ex777pw4jBsmwLr9kG2Kzdn+6SzgfWHmXTx2zPbeNQo553zpw5i54PDQ0xNDTUTngR\nXTGSMA45ZHGFcfzxcOCBsOee8KY3pcKI3hkeHmZ4eHhSx2il4/oM4HDbzfe5nrRRmpuOALD9uXL5\nXGC27cub9ktzU9Rac5NUEkbUQVXXSQwDWwK/AUYm+rPt13cSZNOxLwI+ZPvKcnmk43o7Fndcb9yc\nEZIkop8kYURdVJUkhkZbb3u4nRM1HfNfgeOANYAHgHm29yy3fYxiCOxTFBXMz0fZP0ki+lISRvRS\nbl8a0UeSMGKqVVVJ7EDxq/8FwNOBGcDDtlfpNNDJSpKIQZOEEVOhqiRxJbAPcDrFENj9gU1tH9Fp\noJOVJBGDLAkjqlJZkrC9jaRrbb+4XJcJ/iKmQBJGdFNVSeJi4JXAtynmb7oTOMD2Fp0GOllJEjEd\nJWHEZFWVJDYA7gKWA94PrAJ8zfbNnQY6WUkSMd0lYUQnqkoSh9s+dqJ1UylJImKxJIxoVVVJYp7t\nrZrWpU8iooaSMGI8XU0SkvYF3gK8HLikYdPKwALbu3ca6GQlSURMLAkjmnU7SWxAMT3454CPAiMH\nfhC41vZTk4h1UpIkItqThBFQXXPTSsCjthdI2pTi5kP/O9kbD01GkkRE55Iwpq8qL6Z7ObAacCnw\nW+AJ2/t1GuhkJUlEdEcSxvRSace1pEOBFWz/l6Rrcp1ExGBJwhh8ldyZrjzwDsB+wE/b2S8i+kfz\nHfd22SV33IvWKoldgA8Cl9o+RtJGFFN4HzYVAY4RUyqJiCmSCmNwZKrwiKhUEkZ/6/YQ2GNtHy5p\ntPtRd+XOdJ1KkojovSSM/tPtJLGN7SvHuDOdbf+igxi7Ikkiol6SMPpDZc1Nkp4NYPvuDmPrqiSJ\niPpKwqivro5uUmGOpHuAm4CbJN0jaXYXAt1b0vWSFkjaumH9LEmPSppXPr422XNFxNTKKKnBMl5z\n0weAPYF32r6lXPdc4OvAuba/1PFJpecDC4FvAB+0fVW5fhYw1/bmE+yfSiKiz6TC6L1u90lcDbyy\nuYmpbHo6vxuzwEq6iCSJiGknCaM3un0x3bKj9UGU65ZtN7g2bFg2NQ1L2qnC80REj6RJqn+MlyTG\nm8Bvwsn9JJ0v6bpRHq8bZ7e/A+uX96/4AHCqpJUnOldE9K8kjHobr7lpAfDIGPutYHvS1URzc1Or\n2yV59uzF/edDQ0MMDQ1NNpyIqJE0SU3e8PAww8PDi5aPPvro/rriukwCH7J9Zbm8BvCPclry5wIX\nAy+yfX/TfumTiJhGkjC6o2+m5ZD0r8BxwBrAA8A823tKeiNwNEVz1kLgk7Z/Osr+SRIR01QSRuf6\nJklMVpJEREASRruSJCJi2krCmFiSREQESRhjSZKIiGiShLFYkkRExDime8JIkoiIaNF0TBhJEhER\nHZguCSNJIiJikgY5YSRJRER00aAljCSJiIiKDELCSJKIiJgC/ZowkiQiIqZYPyWMJImIiB6qe8JI\nkoiIqIk6JowkiYiIGqpLwkiSiIiouV4mjCSJiIg+MtUJI0kiIqJPTUXCSJKIiBgAVSWMJImIiAHT\nzYTRN0lC0ueBvYAngD8BB9p+oNx2JHAQsAA4zPZ5o+yfJBER085kE0YnSWKZToOdpPOAF9reArgJ\nOBJA0mbAm4HNgD2Ar0nqVYyTNjw83OsQWpI4uytxdlc/xDlVMa65JhxyCFx4Idx0E+yyCxx/PMyc\nCfvuC2edBY8+2t1z9uQL2Pb5theWi5cD65XP3wCcZvtJ27cCNwPb9SDEruiHf9yQOLstcXZXP8TZ\nixinKmHU4Vf6QcDPyufrALc3bLsdWHfKI4qI6CNVJozKkoSk8yVdN8rjdQ2vOQp4wvap4xwqnQ8R\nES0aL2F0omejmyS9HXgHsLvtx8p1RwDY/ly5fC4w2/blTfsmcUREdKBfRjftAXwR2MX2PQ3rNwNO\npeiHWBe4ANg4Q5kiInpj2R6d9yvAcsD5kgAus/1u2zdIOh24AXgKeHcSRERE7/TlxXQRETE16jC6\nqS2S9pB0o6Q/Svpor+MZIekkSfMlXdewbvWyA/8mSedJWrWXMZYxrS/pIknXS/qdpMPqFquk5SVd\nLulqSTdI+mzdYmwkaYakeZLmlsu1i1PSrZKuLeP8TY3jXFXSjyT9vvy7f2nd4pS0afk5jjwekHRY\n3eIsYz2y/L9+naRTJT293Tj7KklImgEcT3Gh3WbAvpJe0NuoFjmZIq5GRwDn294EuLBc7rUngffb\nfiGwPfAp3DmvAAAGiklEQVSe8jOsTazlQIZdbW8JvBjYVdJOdYqxyeEUTaQjZXkd4zQwZHsr2yPX\nHtUxzmOBn9l+AcXf/Y3ULE7bfyg/x62AbYBHgLOoWZySZlEMDtra9ubADGAf2o3Tdt88gB2AcxuW\njwCO6HVcDfHMAq5rWL4RWKt8vjZwY69jHCXms4FX1DVWYEXgt8AL6xgjxYWgFwC7AnPr+vcO3AI8\nq2ldreIEngn8eZT1tYqzKbZXAZfUMU5gdeAPwGoU/c9zgVe2G2dfVRIUI57+2rBc94vt1rI9v3w+\nH1irl8E0K39pbEVx1XutYpW0jKSry1gusn09NYux9N/Ah4GFDevqGKeBCyRdIekd5bq6xbkhcLek\nkyVdJelbkp5B/eJstA9wWvm8VnHavo9iFOltwN+B+22fT5tx9luS6NtedhdpuzbxS1oJ+DFwuO2H\nGrfVIVbbC100N60H7Cxp16btPY9R0l7AXbbnAaOOPa9DnKWXuWge2ZOiifHljRtrEueywNbA12xv\nDfyTpqaQmsQJgKTlgNcBZzRvq0OckjYC3kfRwrEOsJKktza+ppU4+y1J/A1Yv2F5fZacxqNu5kta\nG0DSTOCuHscDgKSnUSSIU2yfXa6uZawuZgf+KUXbb91i3BF4vaRbKH5N7ibpFOoXJ7bvKP+8m6L9\nfDvqF+ftwO22f1su/4giadxZszhH7AlcWX6mUL/P8yXAr2zfa/sp4EyKJvu2Ps9+SxJXAM+TNKvM\n4m8GzulxTOM5BzigfH4ARft/T6m4MOVE4AbbX27YVJtYJa0xMuJC0goU7ajzqFGMALY/Znt92xtS\nNDv8P9tvo2ZxSlpR0srl82dQtKNfR83itH0n8FdJm5SrXgFcT9GWXps4G+zL4qYmqNnnSdH3sL2k\nFcr/96+gGGDR3ufZ646fDjpj9qTojLkZOLLX8TTEdRpFu98TFP0mB1J0HF1AMR36ecCqNYhzJ4r2\n86spvnjnUYzKqk2swObAVWWM1wIfLtfXJsZRYt4FOKeOcVK09V9dPn438v+mbnGWMW1BMVDhGopf\nvs+saZzPAO4BVm5YV8c4P0KRaK8Dvgs8rd04czFdRESMqd+amyIiYgolSURExJiSJCIiYkxJEhER\nMaYkiYiIGFOSREREjClJIgaOpKPKadCvKady3rZc/77y4rypiGEbSce2uc+tki5uWne1yunnJQ2V\n01LPK6fR/mQ3Y44YTa/uTBdRCUk7AK8FtrL9pKTVgaeXmw8HTgEeHWW/ZWwvbF7fKdtXAld2sOtK\nktazfXs5hXvz3DoX236dpBWBqyXNdTF3VEQlUknEoFkbuMf2k1DMhGn7DhU3V1oHuEjShQCSHpb0\nhXK22R0kvVXFzY7mSfp6ORPtDEnfKW/acq2kw8t9Dytv5nKNpNOagyh/9Y/chGiOiptSXSTpT5IO\nHSN2A6dTTDcDi6d9WGryQNuPUCShjSV9QtJvyhi/0flHF7G0JIkYNOcB60v6g6SvStoZwPZxFNOm\nDNnevXztisCvXcw2ex/wJmBHF7OlLgD2o5gmYh3bm9t+McXNpQA+CmxpewvgXS3EtQnFnEnbAbPL\nG2iN5kzg/5TP96KYZ2cpkp5FcdOo3wHH297OxY1lVihnp43oiiSJGCi2/0kxY+w7gbuBH0o6YIyX\nL6CYDRdg93K/KyTNK5c3BP4MPFfScZJeDYxMq34tcKqk/crjjBsW8FPbT9q+l2LWzbHm8L8X+Iek\nfSgmY3ukafvLJV0F/Bz4rO3fU8w++2tJ1wK7UdygKaIr0icRA6fsW/gF8Iuy0/cAisnNmj3mJScv\n+67tjzW/SNKLKSZBPISi2jiYot9jZ4r7CRwlaXPb4yWLJxqeL2Ds/3sGfkhxm94DWLqp6RLbr2uI\nbXngq8A2tv8maTaw/DhxRLQllUQMFEmbSHpew6qtgFvL5w8Bq4yx64XAv0l6dnmc1SU9p2zWWdb2\nmcAngK3LaZefY3uY4qY4z6SYFXTMsNp8G2cBx1BUCxMZSQj3ljeS2pua3JQnBkMqiRg0KwFfKe9H\n8RTwR4qmJ4BvAudK+lvZL7Hoy9T27yV9HDhP0jLAk8C7gceAk8t1UCSFGcApkp5JkQCOtf1gUxyN\no5JavUuZy1geBj4PUOSjJfZd4ji275f0LYq+iTspbkUb0TWZKjwiIsaU5qaIiBhTkkRERIwpSSIi\nIsaUJBEREWNKkoiIiDElSURExJiSJCIiYkxJEhERMab/D0O/ffhCYw2AAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x10b6d0310>"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.3, Page No:281"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variabel Decleration\n",
"b=6 #Width in inches\n",
"h=10 #Depth in inches\n",
"P1=6000 #Force in lb\n",
"P2=3000 #Force in lb\n",
"L=4 #Length in ft\n",
"P=-13400 #Load in lb\n",
"M=6000 #Moment in lb.ft\n",
"y=5 #Depth in inches\n",
"P2=-9800 #Load in lb\n",
"M2=-12000 #Moment in lb.ft\n",
"\n",
"#Calculations\n",
"A=b*h #Area in in^2\n",
"I=b*h**3*12**-1 #Moment of inertia in in^4\n",
"T=(P1*L+P2*L*3)*(6)**-1 #Tension in the cable in lb\n",
"\n",
"#Computation of largest stress\n",
"sigma_B=(P*A**-1)-(M*y*12*I**-1) #Maximum Compressive Stress caused by +ve BM in psi\n",
"sigma_C=(P2*A**-1)-(M2*-y*12*I**-1) #Maximum Compressive Stress caused by -ve BM in psi\n",
"\n",
"sigma_max=max(-sigma_B,-sigma_C) #Maximum Compressive Stress in psi\n",
"\n",
"#Result\n",
"print \"The maximum Stress is\",round(sigma_max),\"psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum Stress is 1603.0 psi\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.4, Page No:297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"theta=(60*pi)/180 #Angle in radians (Twice as declared)\n",
"sigma_x=30 # Stress in x in MPa\n",
"sigma_y=60 #Stress in y in MPa\n",
"tau_xy=40 #Stress in MPa\n",
"\n",
"#Calcualtions\n",
"sigma_xdash=0.5*(sigma_x+sigma_y)+0.5*(sigma_x-sigma_y)*cos(theta)+tau_xy*sin(theta) #Stress at x' axis in MPa\n",
"sigma_ydash=0.5*(sigma_x+sigma_y)-0.5*(sigma_x-sigma_y)*cos(theta)-tau_xy*sin(theta) #Stress at y' axis in MPa\n",
"tau_x_y=-0.5*(sigma_x-sigma_y)*sin(theta)+tau_xy*cos(theta) #Stress at x'y' in shear in MPa\n",
"#Result\n",
"print \"The new stresses at new axes are as follows\"\n",
"print \"sigma_x'=\",round(sigma_xdash,1),\"MPa sigma_y'=\",round(sigma_ydash,1),\"MPa\"\n",
"print \"And tau_x'y'=\",round(tau_x_y),\"MPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The new stresses at new axes are as follows\n",
"sigma_x'= 72.1 MPa sigma_y'= 17.9 MPa\n",
"And tau_x'y'= 33.0 MPa\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.5, Page No:297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"sigma_x=8000 #Stress in x in psi\n",
"sigma_y=4000 #Stress in y in psi\n",
"tau_xy=3000 #Stress in xy in psi\n",
"\n",
"#Calculations\n",
"R=sqrt(((sigma_x-sigma_y)*0.5)**2+tau_xy**2) #Resultant Stress in psi\n",
"\n",
"#Principal Stresses\n",
"sigma1=(sigma_x+sigma_y)*0.5+R #Principal Stress in psi\n",
"sigma2=(sigma_x+sigma_y)*0.5-R #Principal Stress in psi\n",
"\n",
"#Principal Direction\n",
"theta1=arctan(2*tau_xy*(sigma_x-sigma_y)**-1)*0.5*180*pi**-1 #Principal direction in degrees\n",
"theta2=theta1+90 #Second pricnipal direction in degrees\n",
"\n",
"#Normal Stress\n",
"sigma_xdash=0.5*(sigma_x+sigma_y)+0.5*(sigma_x-sigma_y)*cos(2*theta1*pi*180**-1)+tau_xy*sin(2*theta1*pi*180**-1)\n",
"\n",
"#Result\n",
"print \"The principal stresses are as follows\"\n",
"print \"sigma1=\",round(sigma1),\"psi and sigma2=\",round(sigma2),\"psi\"\n",
"print \"The corresponding directions are\"\n",
"print \"Theta1=\",round(theta1,1),\"degrees and Theta2=\",round(theta2,1),\"degrees\"\n",
"\n",
"#NOTE:The answer in the textbook for principal stresses is off by 4 units in each case"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The principal stresses are as follows\n",
"sigma1= 9606.0 psi and sigma2= 2394.0 psi\n",
"The corresponding directions are\n",
"Theta1= 28.2 degrees and Theta2= 118.2 degrees\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.6, Page No:298"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"sigma_x=40 #Stress in x in MPa\n",
"sigma_y=-100 #Stress in y in MPa\n",
"tau_xy=-50 #Shear stress in MPa\n",
"\n",
"#Calculations\n",
"tau_max=sqrt(((sigma_x-sigma_y)*0.5)**2+tau_xy**2) #Maximum in-plane shear in MPa\n",
"\n",
"#Orientation of Plane\n",
"theta1=arctan(-((sigma_x-sigma_y)*(2*tau_xy)**-1))*180*pi**-1*0.5 #Angle in Degrees\n",
"theta2=theta1+90 #Angle in degrees\n",
"\n",
"#Plane of max in-plane shear\n",
"tau_x_y=-0.5*(sigma_x-sigma_y)*sin(2*theta1*pi*180**-1)+tau_xy*cos(2*theta1*pi*180**-1) \n",
"\n",
"#Normal Stress\n",
"sigma=(sigma_x+sigma_y)*0.5 #Stress in MPa\n",
"\n",
"#Result\n",
"print \"The maximum in-plane Shear is\",round(tau_x_y),\"MPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum in-plane Shear is -86.0 MPa\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.7, Page No:305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Vairable Decleration\n",
"sigma_x=40 #Stress in x in MPa\n",
"sigma_y=20 #Stress in y in MPa\n",
"tau_xy=16 #Shear in xy in MPa\n",
"\n",
"#Calculations\n",
"sigma=(sigma_x+sigma_y)*0.5 #Normal Stress in MPa\n",
"R=sqrt(((sigma_x-sigma_y)*0.5)**2+tau_xy**2) #Resultant Stress in MPa\n",
"\n",
"#Part 1\n",
"sigma1=sigma+R #Principal Stress in MPa\n",
"sigma2=sigma-R #Principal Stress in MPa\n",
"theta=arctan(tau_xy*((sigma_x-sigma_y)*0.5)**-1)*180*pi**-1*0.5 #Orientation in degrees\n",
"\n",
"#Part 2\n",
"tau_max=18.87 #From figure in MPa\n",
"\n",
"#Part 3\n",
"sigma_xdash=sigma+tau_max*cos((100-theta*2)*pi*180**-1) #Stress in MPa\n",
"sigma_ydash=sigma-tau_max*cos((100-theta*2)*pi*180**-1) #Stress in MPa\n",
"tau_x_y=tau_max*sin((100-2*theta)*pi*180**-1) #Shear stress in MPa\n",
"\n",
"#Result\n",
"print \"The principal Stresses are\"\n",
"print \"Sigma1=\",round(sigma1,1),\"MPa and Sigma2=\",round(sigma2,1),\"MPa\"\n",
"print \"The Principal Plane is at\",round(theta),\"degrees\"\n",
"print \"The Maximum Shear Stress is\",tau_max,\"MPa\"\n",
"print \"Sigma_x'=\",round(sigma_xdash),\"MPa and Sigma_y'=\",round(sigma_ydash,2),\"MPa\"\n",
"print \"Tau_x'y'=\",round(tau_x_y,2),\"MPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The principal Stresses are\n",
"Sigma1= 48.9 MPa and Sigma2= 11.1 MPa\n",
"The Principal Plane is at 29.0 degrees\n",
"The Maximum Shear Stress is 18.87 MPa\n",
"Sigma_x'= 44.0 MPa and Sigma_y'= 15.98 MPa\n",
"Tau_x'y'= 12.63 MPa\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.9, Page No:316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variabel Decleration\n",
"sigma_w=120 #Working Stress in MPa\n",
"tau_w=70 #Working Shear in MPa\n",
"\n",
"#Calcualtions\n",
"#Section a-a\n",
"M=3750 #Applied moment at section a-a in N.m\n",
"T=1500 #Applied Torque at section a-a in N.m\n",
"\n",
"#After carrying out the variable based computation we compute d\n",
"d1=((124.62)/(sigma_w*10**3*pi))**0.3333 #Diameter of the shaft in m\n",
"d2=((65.6)/(tau_w*10**3*pi))**0.3333 #Diameter of the shaft in m\n",
"d=max(d1,d2) #Diameter of the shaft to be selected in m\n",
"\n",
"#Result\n",
"print \"The diameter of the shaft to be selected is\",round(d*1000,1),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diameter of the shaft to be selected is 69.2 mm\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.10, Page No:318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"t=0.01 #Thickness of the shaft in m\n",
"p=2 #Internal Pressure in MPa\n",
"r=0.45 #Mean radius of the vessel in m\n",
"tw=50 #Working shear stress in MPa\n",
"\n",
"#Calculation\n",
"sigma_x=(p*r)/(2*t) #Stress in MPa\n",
"sigma_y=(p*r)/t #Stress in MPa\n",
"\n",
"R=100-67.5 #From the diagram in MPa\n",
"tau_xy=sqrt((R**2-(sigma_y-67.5)**2)) #Stress in MPa\n",
"\n",
"J=2*pi*r**3*t #Polar Moment of inertia in mm^4\n",
"\n",
"T=1000*(tau_xy*J)/r #Maximum allowable Torque in kN.m\n",
"\n",
"#Result\n",
"print \"The largest allowable Torque is\",round(T),\"kN.m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The largest allowable Torque is 298.0 kN.m\n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.11, Page No:320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"L=15 #Length of the shaft in inches\n",
"r=3.0/8.001 #Radius of the shaft in inches\n",
"T=540 #Torque applied in lb.in\n",
"\n",
"#Calculations\n",
"V=30 #Transverse Shear Force in lb\n",
"M=15*V #Bending Moment in lb.in\n",
"I=(pi*r**4)/4.0 #Moment of Inertia in in^4\n",
"J=2*I #Polar Moment Of Inertia in in^4\n",
"\n",
"#Part 1\n",
"sigma=(M*r)/I #Bending Stress in psi\n",
"tau_t=10**-3*(T*r)/J #Shear Stress in ksi\n",
"\n",
"sigma_max1=13.92 #From the Mohr Circle in ksi\n",
"\n",
"#Part 2\n",
"Q=(2*r**3)/3.0 #First Moment in in^3\n",
"b=2*r # in\n",
"\n",
"tau_V=10**-3*(V*Q)/(I*b) #Shear Stress in ksi\n",
"tau=tau_t+tau_V #Total Shear in ksi\n",
"\n",
"sigma_max2=tau #Maximum stress in ksi\n",
"\n",
"#Result\n",
"print \"The maximum normal stress in case 1 is\",sigma_max1,\"ksi\"\n",
"print \"The Maximum normal stress in case 2 is\",round(sigma_max2,2),\"ksi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum normal stress in case 1 is 13.92 ksi\n",
"The Maximum normal stress in case 2 is 6.61 ksi\n"
]
}
],
"prompt_number": 60
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.12, Page No:330"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"ex=800*10**-6 #Strain in x \n",
"ey=200*10**-6 #Strain in y\n",
"y_xy=-600*10**-6 #Strain in xy\n",
"\n",
"#Calculations\n",
"e_bar=(ex+ey)*0.5 #Strain \n",
"R=sqrt(2*300**2)*10**-6 #Resultant \n",
"\n",
"#Part 1\n",
"e1=e_bar+R #Strain in Principal Axis\n",
"e2=e_bar-R #Strain in Principal Axis\n",
"\n",
"#Part 2\n",
"alpha=15*180**-1*pi #From the Mohr Circle in degrees\n",
"e_xbar=e_bar-(R*cos(alpha)) #Strain in x \n",
"e_ybar=e_bar+(R*cos(alpha)) #Strain in y\n",
"\n",
"shear_strain=2*R*sin(alpha) #Shear starin \n",
"\n",
"#Result\n",
"print \"The principal Strains are\"\n",
"print \"e1=\",round(e1,6),\"e2=\",round(e2,6)\n",
"print \"The starin components are\"\n",
"print \"ex'=\",round(e_xbar,6),\"ey'=\",round(e_ybar,6),\"y_x'y'=\",round(shear_strain,6)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The principal Strains are\n",
"e1= 0.000924 e2= 7.6e-05\n",
"The starin components are\n",
"ex'= 9e-05 ey'= 0.00091 y_x'y'= 0.00022\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.13, Page No:331"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"e_x=800*10**-6 #Strain in x\n",
"e_y=200*10**-6 #Strain in y\n",
"y_xy=-600*10**-6 #Strain in xy\n",
"v=0.30 #Poissons Ratio\n",
"E=200 #Youngs Modulus in GPa\n",
"R_e=424.3*10**-6 #Strain\n",
"e_bar=500*10**-6 #Strain\n",
"\n",
"#Calculations\n",
"#Part 1\n",
"R_sigma=10**-6*R_e*(E*10**9/(1+v)) #Stress in MPa\n",
"sigma_bar=10**-6*e_bar*(E*10**9/(1-v)) #Stress in MPa\n",
"\n",
"#Part 2\n",
"sigma1=sigma_bar+R_sigma #Principal Stress in MPa\n",
"sigma2=sigma_bar-R_sigma #Principal Stress in MPa\n",
"\n",
"#Result\n",
"print \"The principal Stresses are as follows\"\n",
"print \"Sigma1=\",round(sigma1),\"MPa and Sigma2=\",round(sigma2,1),\"MPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The principal Stresses are as follows\n",
"Sigma1= 208.0 MPa and Sigma2= 77.6 MPa\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8.14, Page No:336"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"e_a=100*10**-6 #Strain \n",
"e_b=300*10**-6 #Strain\n",
"e_c=-200*10**-6 #Strain\n",
"E=180 #Youngs Modulus in GPa\n",
"v=0.28 #Poissons Ratio \n",
"\n",
"#Calculations\n",
"y_xy=(e_b-(e_a+e_c)*0.5) #Strain in xy\n",
"e_bar=(e_a+e_c)*0.5 #Strain \n",
"R_e=sqrt(y_xy**2+(150*10**-6)**2) #Resultant Strain\n",
"\n",
"#Corresponding Parameters from Mohrs Diagram\n",
"sigma_bar=(E/(1-v))*e_bar*10**3 #Stress in MPa\n",
"R_sigma=(E/(1+v))*R_e*10**3 #Resultant Stress in MPa\n",
"\n",
"#Principal Stresses\n",
"sigma1=sigma_bar+R_sigma #MPa\n",
"sigma2=sigma_bar-R_sigma #MPa\n",
"\n",
"theta=arctan(y_xy/(150*10**-6))*180*pi**-1*0.5 #Degrees\n",
"\n",
"#Result\n",
"print \"The Principal Stresses are as follows\"\n",
"print \"Sigma1=\",round(sigma1,1),\"MPa and Sigma2=\",round(sigma2,2),\"MPa\"\n",
"print \"The plane orientation is\",round(theta,2),\"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Principal Stresses are as follows\n",
"Sigma1= 41.0 MPa and Sigma2= -66.05 MPa\n",
"The plane orientation is 33.4 degrees\n"
]
}
],
"prompt_number": 32
}
],
"metadata": {}
}
]
}
|