summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter05.ipynb
blob: dd430e740b342c6debe2fa61262be2a8d21e46c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
{
 "metadata": {
  "name": "",
  "signature": "sha256:d010557f61cf332fc38fdfe2d2ac6c4c0f491cf23de08424aa98b7c064b49092"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 05:Stresses in Beams"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.1, Page No:142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Decleration\n",
      "b=0.12 #Breadth of the CS of the beam in m\n",
      "h=0.2 #Depth of the CS of the beam in m\n",
      "BM_max=16*10**3 #Maximum Bending Moment in N.m\n",
      "c=0.1 #Distance of the centroid of the CS from the bottom fibre in m\n",
      "y1=0.025 #Distance in m\n",
      "BM=9.28*10**3 #Bending Moment in kN.m\n",
      "\n",
      "#Calculations\n",
      "#Preliminary Calculations\n",
      "I=b*h**3*12**-1 #Moment of Inertia in m^4\n",
      "\n",
      "#Part 1\n",
      "sigma_max=(BM_max*c)/(I) #Maximum bending stress in the beam in Pa\n",
      "\n",
      "#Part 2\n",
      "#Plot variables\n",
      "x_plot=[0.00000001,c,c+0.000000011,c+c]\n",
      "y_plot=[sigma_max,0,0,sigma_max]\n",
      "\n",
      "#Part 3\n",
      "y=h*0.5-y1 #Distance of point at which BM is 9.8kN.m\n",
      "sigma=(BM*y)/I #Bending Stress in Pa\n",
      "\n",
      "#Result\n",
      "print \"The Bending Stress at maximum Bending Moment in the beam is\",sigma_max*10**-6,\"MPa\"\n",
      "print \"The Bending Stress in part 3 is\",-sigma*10**-6,\"MPa\"\n",
      "print \"The plot for stress distribution is given below\"\n",
      "\n",
      "plt.plot(y_plot,x_plot)\n",
      "plt.ylabel(\"Distance from top fibre in m\")\n",
      "plt.xlabel(\"Stress in MPa\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Bending Stress at maximum Bending Moment in the beam is 20.0 MPa\n",
        "The Bending Stress in part 3 is -8.7 MPa\n",
        "The plot for stress distribution is given below\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG0BJREFUeJzt3X20XHV97/H3l0SRh1JCS+UCCQFEJJaHNBqCgJ4rDzcg\nSFevFFIsarWmdSHQh7XQ2mvCXauLelu9QKmQCqUUH4Kp3JZUlAjlAAWMEAghJHBJS3ohIEUehIBg\nSD73j71PsjOZc86eOfs3D3s+r7XO4syevWd+mTXknf0ckjAzMxvPTt0egJmZ9QcHw8zMSnEwzMys\nFAfDzMxKcTDMzKwUB8PMzEpJGoyImBsRj0bE4xFxUZPnz4mIhyJiVUTcHRFHlF3WzMw6K1KdhxER\nk4DHgBOBDcB9wDxJawvzHAOskfTTiJgLLJQ0p8yyZmbWWSnXMGYD6yStl7QJWAycUZxB0r2Sfpo/\nXA7sX3ZZMzPrrJTB2A94svD4qXzaaD4J3NzmsmZmltjkhK9deltXRPxX4HeAY1td1szMOiNlMDYA\nUwuPp5KtKWwn39H9NWCupBdbXNZhMTNrg6RodZmUm6TuBw6JiOkR8VbgLOCm4gwRMQ24EfiopHWt\nLDtCkn8q+lmwYEHXx1CnH3+e/iy78fPUU+Kyy8Rxx4kpU8S554qlS8Xrr2+bp13J1jAkvRkR5wG3\nAJOAayStjYj5+fOLgC8CU4ArIwJgk6TZoy2baqxmZv1swwb4zndgyRJ45BE4/XS46CI46STYeefq\n3iflJikkfQ/4XsO0RYXfPwV8quyyZmaW6VQkipIGw/rL0NBQt4dQK/48q+PPMtONSBQlO3GvEyJC\n/Tx+M7PxNIvEmWdOLBIRgdrY6e1gmJn1mBSRKHIwzMz6WOpIFDkYZmZ9ppORKHIwzMz6QLciUeRg\nmJn1qF6IRJGDYWbWQ3otEkUOhplZl/VyJIocDDOzLuiXSBQ5GGZmHdKPkShyMMzMEur3SBQ5GGZm\nFatTJIocDDOzCtQ1EkUOhplZmwYhEkUOhplZCwYtEkUOhpnZOAY5EkUOhplZE47EjhwMM7OcIzE2\nB8PMBpojUZ6DYWYDx5Foj4NhZgPBkZg4B8PMasuRqJaDYWa14kik42CYWd9zJDrDwTCzvuRIdJ6D\nYWZ9w5HoLgfDzHqaI9E7HAwz6zmORG9yMMysJzgSvc/BMLOucST6i4NhZh3lSPQvB8PMknMk6sHB\nMLMkHIn6cTDMrDKORL05GGY2IY7E4HAwzKxljsRgcjDMrBRHwhwMMxuVI2FFyYIREVOAc4HpwOR8\nsiSd3+qbVc3BMBudI2GjaTcYk8efhZuBe4FVwBYgAP8tbdaDmkXiooscCatGmTWMByT9WofG0xKv\nYZh5TcJal3KT1B8DLwNLgTdGpkt6odU3q5qDYYPKkbCJSBmM84A/A14i2yQF2T6Mg1oeZcUcDBsk\njoRVJWUwngDeK+kn7Q4uFQfD6s6RsBRS7vR+HPhZ60Mys3Z4x7X1qjLBeA1YGRG3s20fRk8cVmtW\nF46E9YMym6Q+nv86MmOQBeO6cV88Yi5wKTAJuFrSlxqefxdwLTAT+IKkLxeeW0+2s30zsEnS7Cav\n701S1re8ucm6pefO9I6IScBjwInABuA+YJ6ktYV59gYOAH4deLEhGE8As8Y6GsvBsH7jSFgvSLkP\no12zgXWS1gNExGLgDGBrMCQ9BzwXER8a5TVa/gOZ9RpvbrK6SBmM/YAnC4+fAo5uYXkBt0bEZmCR\npK9VOTizlBwJq6OUwZjotqJjJT2Tb7b6QUQ8KumuxpkWLly49fehoSGGhoYm+LZm7XEkrFcNDw8z\nPDw84dcps9P7UOCP2fHigx8cZ7k5wEJJc/PHnwe2NO74zp9bAGws7sMo87z3YVi3eZ+E9aOU+zCW\nAFcCV5MdsQTl1h7uBw6JiOnA08BZwLxR5t1u4BGxKzBJ0isRsRtwMnBxifc0S85rEjaoyqxhrJA0\nq60XjziFbYfVXiPpkoiYDyBpUUTsQ3b01B5klx15BZgB/ApwY/4yk4FvSLqkyet7DcM6wmsSVicp\nLw2yEHiO7C9wX3zQBoYjYXWVMhjrabIJStKBrb5Z1RwMq5ojYYOg507c6wQHw6rgSNigqTwYEXGC\npNsi4r/TfA3jxiaLdZSDYe1yJGyQpThK6v3AbcDpND8qquvBMGuFj24ymxhvkrJa85qE2Y68D8Ms\n50iYjc3BsIHmSJiV52DYwHEkzNqT8jyM3YA/BKZJ+t2IOAQ4VNI/tzfU6jgYg8eRMJu4lMH4NrAC\nOFfSu/OA3CPpyPaGWh0HYzA4EmbVSnnxwYMl/WZEnA0g6dUI39fI0vIhsGa9p0ww3oiIXUYeRMTB\nFK4pZVYVR8Kst5UJxkLg+8D+EfFN4Fjg4wnHZAPEkTDrH2Puw4iInYAzyc74npNPXp7fi7vrvA+j\nP3mfhFl3pdzp3fb9MFJzMPqHI2HWO1IG48+BnwA3AK+OTPf9MGw8joRZb+r0/TAk6aBW36xqDkbv\ncSTMep/P9LaucSTM+kvKNYxdgM8Ax5GtadwFXCnp9XYGWiUHo3scCbP+lTIYS4CXga8DAfwW8IuS\nzmxnoFVyMDrLkTCrh5TBWCNpxnjTusHBSM+RMKuflJcGeSAijpF0b/5Gc8iuLWU15ZPpzKyZse7p\n/XD+62TgUOBJsn0Y04DHJB3WkRGOwWsY1fGahNngqHyTVERMH2tBSetbfbOqORgT40iYDaYUwdhD\n0ssRsVez533iXn9yJMwsRTC+K+lDPnGv/zkSZlaUIhjHSfrXiHhbL5xz0YyDMTpHwsxGkyIYKyTN\niogHJP3ahEeYgIOxPUfCzMpIEYzlwCrgDGAx2Ul7IyTp/HYGWiUHw5Ews9alOA/jNOAE4GSy8y6C\nbF/GyH+tS3yehJl1Q5kzvY+StLJD42nJIK1heE3CzKriq9XWkCNhZik4GDXhSJhZag5GH3MkzKyT\nUl6t9peBBWx/P4z/Ken5dgZapX4OhiNhZt2SMhi3Anew/f0whiSd2M5Aq9RvwXAkzKwXpAzGakm/\n2jDtYUmHt/pmVeuHYDgSZtZrUt4PY1lEzANuyB+fCSxr9Y0Gic+TMLM6KrOGsRHYFdiST9oJeDX/\nXZL2SDe8sfXSGobXJMysX/goqS5wJMysHyUNRkScAbyf7CipOyQtbX2I1etGMBwJM+t3KXd6/znw\nXuAbZEdJnQ3cL+nz7Qy0Sp0KhiNhZnWSMhgPA0dJ2pw/ngSsrPtRUo6EmdVVyqOkBOwJjJyotyc1\nvVqtj24yMxtdmWBcAjwQEbeTbZL6APC5pKPqIEfCzKycsju99yXbjyHgPknPpB5YGe1ukvLmJjMb\nZCn3Ydwm6YTxpnVDK8FwJMzMMu0GY6cxXnCXiPglYO+I2KvwMx3Yr+Sg5kbEoxHxeERc1OT5d0XE\nvRHxekT8USvLlrFhA1x+ORx/PBx+OKxYkW1ueuYZuO46OO00x8LMrKyx7ul9IXABsC/wdOGpV4C/\nkXTFmC+cHU31GHAisAG4D5gnaW1hnr2BA4BfB16U9OWyy+bz7bCG4TUJM7OxVX6UlKRLgUsj4nxJ\nl7cxptnAOknr8wEuBs4Atv6lL+k54LmI+FCryxZ5x7WZWXrjHiXVZiwg22z1ZOHxU8DRVS977LGw\ndq0jYWaWWpnDats1kXM1Si97zz0Lec97YNIk2HXXIXbeeWgCb2tmVj/Dw8MMDw9P+HVSBmMDMLXw\neCrZmkKlyz7yyEKWLMk2Ry1bBh/5SLbP4phjYKdRd+mbmQ2OoaEhhoaGtj6++OKL23qdsudhHAlM\nZ1tgJOnGcZaZTLbj+gSyneY/osmO63zehcArhZ3epZZt3Om9Zg1b4/HSS46HmVkzKc/DuBY4HHiE\nbffEQNInSgzqFOBSYBJwjaRLImJ+vvyiiNiH7AioPfLXfgWYIWljs2WbvP6o52E4HmZmzaUMxhrg\n3T1zp6KCsifuOR5mZtukDMZ1wP+S9Ei7g0ulnUuDOB5mNuhSBmMIuAn4MfBGPlmSjmj1zao20cub\nOx5mNohSBuPfgD8AVrP9Poz1rb5Z1aq8H4bjYWaDImUw7pV0TNsjSyjVDZQcDzOrs5TB+CrZTZOW\nAj/PJ497WG0ndOIWrY6HmdVNymD8Xf7rdjOWOaw2tU7d03uE42FmdZAsGL2s08EocjzMrF+lXMOY\nClwOHJdPuhO4QFLZy3wk081gFDkeZtZPUgbjVuAbwNfzSecA50g6qeVRVqxXglHkeJhZr0sZjIck\nHTnetG7oxWAUOR5m1otSBuNfgGuBbwIBnA18ot/u6d1tjoeZ9YqUwTgAuAKYk0+6B/ispP/X8igr\n1k/BKHI8zKybkgQjv8z4dZLOmcjgUunXYBQ5HmbWaSnXMP4VOEHSG2PO2AV1CEaR42FmnZAyGNcD\n7yK7AOFr+WRJ+krLo6xY3YJR5HiYWSopg7GAbGd345ne7d3jr0J1DkaR42FmVao8GBFxvaTfjogL\nJV064REmMCjBKHI8zGyiUgRjDXAi8H1gqPF5SS+0+mZVG8RgFDkeZtaOFME4H/h94CDg6YanJemg\nlkdZsUEPRpHjYWZlpdyHcZWk32t7ZAk5GM05HmY2Fl+t1ppyPMyskYNh43I8zAwcDGuR42E2uJIG\nIyKmA++QdGtE7ApMlvRyy6OsmINRDcfDbLCk3On9aeB3gb0kHRwR7wSu9NVq68nxMKu/pPfDAGYD\nP5Q0M5/2sKTD2xpphRyMtBwPs3pqNxhl/rd/o3jhwfwKtv5begDMmAELFsDq1bBsGUyZAvPnw7Rp\ncOGFcPfdsGVLt0dpZp1SZg3jL4CXgHOB84DPAGskfSH98MbmNYzu8JqHWX9LuUlqEvBJ4OR80i3A\n1b3wN7WD0X2Oh1n/SRmM3YDXJW3OH08Cdpb02pgLdoCD0VscD7P+kDIYy8luoLQxf/wLwC2S3tfW\nSCvkYPQux8Osd6UMxkpJR403rRscjP7geJj1lpRHSb0aEbMKb/Qe4GetvpENLh9tZVYPZdYw3gss\nBp7JJ/0X4CxJ9yce27i8htHfvOZh1h2pLw3yVuBQsvMvHpO0qfUhVs/BqA/Hw6xzUgfjfcCBwNaT\n9iT9fatvVjUHo54cD7O0Uu70/jrZXfdWAptHpkv6bKtvVjUHo/4cD7PqpQzGWmBGL/7N7GAMFsfD\nrBopg7EEuEBS4329u87BGFyOh1n7UgZjGDgK+BEwchFCSfpwq29WNQfDwPEwa1XKYAw1my5puNU3\nq5qDYY0cD7Px+RatZg0cD7PmUq5hHANcDhwG7AxMAjZK2qOdgVbJwbCyHA+zbVIGYwVwNvBt4D1k\n98U4VNLn2hlolRwMa4fjYYMuaTAkzYqIVZKOyKf54oNWC46HDaKUwbgTOAm4mux6Uj8GPibpyHYG\nWiUHw6rkeNigSBmMA4D/BN4K/AGwB/BVSevaGWiVHAxLxfGwOksZjAskXTbetFGWnQtcSraj/GpJ\nX2oyz+XAKcBrwMclPZhPXw+8THY5kk2SZjdZ1sGw5BwPq5uUwXhQ0syGaePuw8hv5foYcCKwAbgP\nmCdpbWGeU4HzJJ0aEUcDl0makz/3BDBL0gtjvIeDYR3leFgdVH4DpYiYFxFLgQMjYmnhZxh4vsRr\nzwbWSVqfXw59MXBGwzwfBq4DkLQc2DMi3l4cRgt/FrPkfDMoG2STx3juHrKd3HsDf8m2v7xfBlaV\neO39gCcLj58Cji4xz37As2SXUb81IjYDiyR9rcR7mnXMSDwWLNi25jF/vtc8rL5GDYak/wD+IyJO\nBH4maXNEHEp2I6WHS7x22W1Fo61FHCfp6YjYG/hBRDwq6a7GmRYuXLj196GhIYaGhkq+rVl1HA/r\nZcPDwwwPD0/4dcqeuHc8MAW4m2xfxM8lnTPOcnOAhZLm5o8/D2wp7viOiKuAYUmL88ePAh+Q9GzD\nay0gO7v8yw3TvQ/Depr3eVgvqnwfRnEeSa8Bv0F2OO2ZwK+WWO5+4JCImJ7f4vUs4KaGeW4iO3N8\nJDAvSXo2InaNiF/Ip+8GnEy5tRqznuJ9HlYnpf6Nk19P6hzgu2WXk/QmcB5wC7AGuEHS2oiYHxHz\n83luBv49ItYBi4DP5IvvA9wVESuB5cA/S1pW/o9l1nscD+t3ZTZJfQD4I+BuSV+KiIPJbqh0ficG\nOBZvkrI68GYr6zRf3tysBhwP64TKgxERl0m6ID8Xo5HvuGeWmONhqaQIxixJK0a5454k3dHqm1XN\nwbBB4XhYlZJuksrPhUDSc22MLRkHwwaR42ETlWINI4AFZEc6Tconbwb+StLF7Q60Sg6GDTrHw9qR\nIhh/SHYV2U9LeiKfdhBwFfB9SV+ZwHgr4WCYbeN4WFkpgrESOKlxM9TIpTp8xz2z3uV42FhSBGO1\npKZndI/1XCc5GGbjczysUYpg7HAfjDLPdZKDYdYax8MgTTA2k90Fr5ldJI11afSOcDDM2ud4DC6f\n6W1mbXM8BouDYWaVcDzqz8Ews8o5HvXkYJhZUo5HfTgYZtYxjkd/czDMrCscj/7jYJhZ1zke/cHB\nMLOe4nj0LgfDzHqW49FbHAwz6wuOR/c5GGbWdxyP7nAwzKyvOR6d42CYWW04Hmk5GGZWS45H9RwM\nM6s9x6MaDoaZDRTHo30OhpkNLMejNQ6GmRmORxkOhplZA8ejOQfDzGwMjsc2DoaZWUmDHg8Hw8ys\nDYMYDwfDzGyCBiUeDoaZWYXqHA8Hw8wskbrFw8EwM+uAOsTDwTAz67B+jYeDYWbWRf0UDwfDzKxH\n9Ho8HAwzsx7Ui/FwMMzMelyvxMPBMDPrI92Mh4NhZtanOh0PB8PMrAY6EQ8Hw8ysZlLFw8EwM6ux\nKuPRbjCS7lqJiLkR8WhEPB4RF40yz+X58w9FxMxWljUzGxQzZsCCBbB6NSxbBlOmwPz5MG0aXHgh\n3H03bNmSdgzJghERk4ArgLnADGBeRBzWMM+pwDskHQJ8Griy7LJWveHh4W4PoVb8eVbHn+X2uhWP\nlGsYs4F1ktZL2gQsBs5omOfDwHUAkpYDe0bEPiWXtYr5f8pq+fOsjj/L0XUyHimDsR/wZOHxU/m0\nMvPsW2JZMzMrSB2PlMEouze65R0vZmY2tmI8fvAD2GuvbfFoV7KjpCJiDrBQ0tz88eeBLZK+VJjn\nKmBY0uL88aPAB4ADx1s2n+5DpMzM2tDOUVKTUwwkdz9wSERMB54GzgLmNcxzE3AesDgPzEuSno2I\n50ss29Yf2MzM2pMsGJLejIjzgFuAScA1ktZGxPz8+UWSbo6IUyNiHfAq8Imxlk01VjMzG19fn7hn\nZmad0wO38hjfRE4AtB2N93lGxFBE/DQiHsx//rQb4+wHEfG3EfFsRDw8xjz+bpYw3mfp72VrImJq\nRNweEY9ExOqIOH+U+cp/PyX19A/ZJql1wHTgLcBK4LCGeU4Fbs5/Pxr4YbfH3as/JT/PIeCmbo+1\nH36A44GZwMOjPO/vZnWfpb+XrX2e+wBH5b/vDjw20b87+2ENo90TAN/e2WH2jbInRfqAghIk3QW8\nOMYs/m6WVOKzBH8vS5P0Y0kr8983AmvJznEraun72Q/BaPcEwP0Tj6tflfk8BbwvX0W9OSJmdGx0\n9ePvZnX8vWxTfsTpTGB5w1MtfT9THlZblXZPAPTe/ObKfC4PAFMlvRYRpwD/CLwz7bBqzd/Navh7\n2YaI2B34B+CCfE1jh1kaHo/6/eyHNYwNwNTC46lkFRxrnv3zabajcT9PSa9Iei3//XvAWyJir84N\nsVb83ayIv5eti4i3AN8Bvi7pH5vM0tL3sx+CsfUEwIh4K9lJfDc1zHMTcC5sPcP8JUnPdnaYfWPc\nzzMi3h4Rkf8+m+zw6xc6P9Ra8HezIv5etib/rK4B1ki6dJTZWvp+9vwmKU3gBEDbUZnPE/gI8PsR\n8SbwGnB21wbc4yLiW2SXs/nliHgSWEB29Jm/my0a77PE38tWHQt8FFgVEQ/m0/4EmAbtfT994p6Z\nmZXSD5ukzMysBzgYZmZWioNhZmalOBhmZlaKg2Fm1kfKXPCyMO9XChdrfCwixrv0ytiv56OkzMz6\nR0QcD2wE/l7S4S0sdx7ZxQg/1e57ew3DaisivpBf1vmh/F9Y782nXxgRu3RoDLMi4rIWl1kfEXc2\nTFs58i/Khst8r4mIL1Y5ZuttzS7SGBEHR8T3IuL+iLgzIg5tsuhvAd+ayHv3/Il7Zu2IiGOADwEz\nJW3KLyGxc/70BcD1wM+aLLeTpC1VjUPSCmBFG4vuHhH7S3oqIg4ju75PcXPAnZJOj4hdgZURsVTS\ng81fygbA3wDzJa2LiKOBrwInjDwZEQeQ3dLgXybyJl7DsLraB/hJfgl3JL0g6Zn8JjL7ArdHxG0A\nEbExIv4yIlYCx0TERyNief4v+KsiYqeImBQRfxcRD0fEqoi4IF/2/PwGNQ/lZypvJ18bWJr/vjDf\n/nx7RPxbRHx2lLEL+DbZZVsgu5/9t2hyae/82korgHdExP+IiB/lY1zU/kdn/SS/uOAxwJL8jO6r\nyL7/RWcDSzTBfRAOhtXVMmBqvqPvryPi/QCSLgeeBoYkjfwLbFeyG8ccBbwA/CbwPkkzgc3AOcCR\nwL6SDpd0BHBtvuxFZNuFjwTmlxjXO4GTye5LsiAiJo0y343Ab+S/nwYsbTZTRPwSMAdYDVwhaXa+\nXXuXiDitxHis/+1Edg2omYWfdzfMcxYT3Bw18kZmtSPpVWAW8GngOeCGiPjYKLNvJruiJ2Sr8bOA\n+/N/rZ0AHAj8O3BQZLez/G/AK/n8q4BvRsQ5+euMOSzgu5I2SXoe+E9gtJvVPA+8GBFnA2vIrp1U\ndHxEPEB2TbBLJK0FPhgRP4yIVcAHgca/NKyGJL0MPBERH4HsooMRccTI8xHxLmCKpB9O9L28D8Nq\nK98XcQdwR77D+GPkdxdr8HrDqvp1kv6kcab8f8K5wO+RrYV8kmw/yfuB04EvRMThksYKx88Lv29m\n9P8HBdwAXJGPu3Fz1F2STi+M7W3AXwOzJG2IiAXA28YYh/WpJhdp/CLZWvCVkd3n/C1kaxOr8kUq\nWbsAB8NqKiLeCUjS4/mkmcD6/PdXgD3INj81ug34p4j435Key3eW7052Jc9Nkm6MiP8LXB8RAUyT\nNBwRd5NtJ94NeHm0YbX4x/g/ZNuib2H8u/SNxOH5fJv2mWT7QaxmJM0b5alTRpn/4qre28Gwutod\n+KuI2BN4E3icbPMUZEeUfD8iNuT7MbauXeSXev9TYFlE7ARsAj4DvA5cm08D+BzZ5eGvj4hfJIvB\nZfnmgaLi0U2NRzqNRvlYNgJ/AZC1abtlt3sdSS9FxNfI9mX8mB1vxWk2YT5xz8zMSvFObzMzK8XB\nMDOzUhwMMzMrxcEwM7NSHAwzMyvFwTAzs1IcDDMzK8XBMDOzUv4/8owUUNjXpIUAAAAASUVORK5C\nYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10b690cd0>"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.2, Page No:143"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "wf=6 #Width of the top flange in inches\n",
      "df=0.8 #Depth of the top flange in inches\n",
      "dw=8 #Depth of the web portion in inches\n",
      "ww=0.8 #Width of the web portion in inches\n",
      "Ra=1600 #Reation at point A in lb\n",
      "Rb=3400 #Reaction at point B in lb\n",
      "w=400 #Load on the beam in lb/ft\n",
      "M_4=3200 #Moment at x=4 ft in lb.ft\n",
      "M_10=4000 #Moment at x=10 ft in lb.ft\n",
      "\n",
      "#Calculations\n",
      "#Preliminary Calculations\n",
      "#Area computation\n",
      "A1=dw*ww #Area of the web portion in sq.in\n",
      "A2=wf*df #Area of the top flange in sq.in\n",
      "y1=dw*0.5 #Centroid from the bottom of the web portion in inches\n",
      "y2=dw+df*0.5 #Centroid from the bottom of the flange portion in inches\n",
      "\n",
      "#y_bar computation\n",
      "y_bar=(A1*y1+A2*y2)/(A1+A2) #centroid of the section in inches from the bottom\n",
      "\n",
      "#Moment of Inertia computation\n",
      "I=(ww*dw**3*12**-1)+(A1*(y1-y_bar)**2)+(wf*df**3*12**-1)+(A2*(y2-y_bar)**2) #Moment of inertia in in^4\n",
      "\n",
      "#Maximum Bending Moment\n",
      "c_top=dw+df-y_bar #distance of top fibre in inches\n",
      "c_bot=y_bar #Distance of bottom fibre in inches\n",
      "\n",
      "#Stress at x=4 ft\n",
      "sigma_top=-(12*M_4*c_top)*I**-1 #Stress at top fibre in psi\n",
      "sigma_bot=12*M_4*c_bot*I**-1 #Stress at bottom fibre in psi\n",
      "\n",
      "#Stress at x=10 ft\n",
      "sigma_top2=M_10*12*c_top*I**-1 #Stress at the top fibre in psi\n",
      "sigma_bot2=-M_10*12*c_bot*I**-1 #Stress at the bottom fibre in psi\n",
      "\n",
      "#Maximum values\n",
      "sigma_t=max(sigma_bot,sigma_bot2,sigma_top,sigma_top2) #Maximum values for stress in tension\n",
      "sigma_c=min(sigma_top,sigma_top2,sigma_bot,sigma_bot2) #Maximum values for stress in compression\n",
      "\n",
      "#Result\n",
      "print  \"The maximum values of stress are\"\n",
      "print \"Maximum Tension=\",round(sigma_t),\"psi at x=4ft\"\n",
      "print \"Maximum Compression=\",round(-sigma_c),\"psi at x=10ft\"\n",
      "\n",
      "#NOTE:Answer is differing becuase of the decimal accuracy\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum values of stress are\n",
        "Maximum Tension= 2583.0 psi at x=4ft\n",
        "Maximum Compression= 3229.0 psi at x=10ft\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.3, Page No:145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "L=4 #Length of each section in ft\n",
      "h_ab=4 #Thickness of the front section in inches\n",
      "h_bd=6 #Thickness of the back section in inches\n",
      "P=2000 #Point load acting at point A in lb\n",
      "M_B=8000 #Moment at 4ft in lb.ft\n",
      "M_D=16000 #Moment at x=8ft in lb.ft\n",
      "b=2 #Breadth in inches\n",
      "\n",
      "#Calculations\n",
      "S_ab=b*h_ab**2*6**-1 #Sectional Modulus of section AB in in^3\n",
      "S_bd=b*h_bd**2*6**-1 #Sectional Modulus of section BD in in^3\n",
      "sigma_B=12*M_B*S_ab**-1 #Maximum bending stress in psi\n",
      "sigma_D=12*M_D*S_bd**-1 #Maximum bending stress in psi\n",
      "\n",
      "#Maximum stress\n",
      "sigma_max=max(sigma_B,sigma_D) #Maximum stress in psi\n",
      "\n",
      "#Result\n",
      "print \"Comparing the two results we find that the maximum stress is\"\n",
      "print \"Sigma_max=\",round(sigma_max),\"psi\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Comparing the two results we find that the maximum stress is\n",
        "Sigma_max= 18000.0 psi\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.4, Page No:146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "M=15000 #Maximum bending moment in absolute values in lb.ft\n",
      "S=42 #Sectional Modulus in in^3\n",
      "\n",
      "#Calculations\n",
      "sigma_max=M*12*S**-1 #Maximum stress in the section in psi\n",
      "\n",
      "#Result\n",
      "print \"The maximum Bending Stress in the section is\",round(sigma_max),\"psi\"\n",
      "\n",
      "#NOTE:The answer differs due to decimal point accuracy"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum Bending Stress in the section is 4286.0 psi\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.5, Page No:157"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "M_max=60*10**3 #Maximum Bending Moment in kN.m\n",
      "sigma_w=120*10**6 #Maximum Bending Stress allowed in Pa\n",
      "M_max_2=61.52*10**3 #max bending moment computed in N.m\n",
      "\n",
      "#Section details\n",
      "mass=38.7 #Mass in kg/m\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "S=549*10**3 #Sectional modulus of the section in mm^3\n",
      "\n",
      "#Calculations\n",
      "S_min=M_max*sigma_w**-1*10**9 #Minimum Sectional Modulus required in mm^3\n",
      "\n",
      "#We selecet section W310x39\n",
      "w0=mass*g*10**-3 #Weight of the beam in kN/m\n",
      "sigma_max=M_max_2*S**-1*10**3 #Maximum stress in MPa\n",
      "\n",
      "#Result\n",
      "print \"The section chosen is W310x39 with maximum stress as\",round(sigma_max,1),\"MPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The section chosen is W310x39 with maximum stress as 112.1 MPa\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.6, Page No:166"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "V_max=24 #Maximum Shear in kN\n",
      "b=0.160 #Width of the beam in m\n",
      "h=0.240 #Depth of the beam in m\n",
      "\n",
      "#Calculations\n",
      "I=b*h**3*12**-1 #Moment of Inertia of the beam in m^4\n",
      "\n",
      "#Part 1\n",
      "Q=b*(h*3**-1)**2 #First moment of Area m^3\n",
      "tau_max=(V_max*Q)*(I*b)**-1 #Maximum Shear Stress in glue in kPa\n",
      "\n",
      "#Part 2\n",
      "tau_max_2=(3.0/2.0)*(V_max/(b*h)) #Shear Stress in kPa\n",
      "Q_1=b*h*0.5*h*0.25 #First moment about NA in m^3\n",
      "tau_maxx=(V_max*Q_1)/(I*b) #Shear stress in kPa\n",
      "\n",
      "#Result\n",
      "print \"The Results agree in both parts\"\n",
      "print \"The maximum stress is\", round(tau_max_2),\"kPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Results agree in both parts\n",
        "The maximum stress is 938.0 kPa\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.7, Page No:167"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "I=310 #Moment of inertia in in^4\n",
      "V=160 #Shear Force in kips\n",
      "#Dimension defination\n",
      "tf=0.515 #Thickness of flange in inches\n",
      "de=11.94 #Effective depth in inches\n",
      "tw=0.295 #Thickness of web in inches\n",
      "wf=8.005 #Width of lange in inches\n",
      "\n",
      "#Calculations\n",
      "#Part 1\n",
      "Q=wf*tf*(de-tf)*0.5 #First moment about NA in inch^3\n",
      "tau_min=(V*Q*10**2)/(I*tw) #Minimum shear stress in web in psi\n",
      "\n",
      "#Part 2\n",
      "A_2=(de*0.5-tf)*tw #Area in in^3\n",
      "y_bar_2=0.5*(de*0.5-tf) #Depth in inches\n",
      "\n",
      "Q_2=Q+A_2*y_bar_2 #First Moment in inches^3\n",
      "\n",
      "tau_max=(V*Q_2*10**2)/(I*tw) #Maximum Shear Stress in psi\n",
      "\n",
      "#Part 3\n",
      "V_web=10.91*tw*(tau_min+((2*3**-1)*(tau_max-tau_min))) #Shear in the web in lb\n",
      "perV=(V_web/V)*100 #Percentage shear force in web in %\n",
      "t_max_final=V*10**3/(10.91*tw)\n",
      "\n",
      "#result\n",
      "print \"The final shear stress in the web portion is\",round(t_max_final),\"psi\"\n",
      "#NOTE:Answer differs due to deciaml point accuracy"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The final shear stress in the web portion is 49713.0 psi\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.8, Page No:168"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "I=547 #Moment of inertia in inches^4\n",
      "d=8.9 #NA deoth in inches\n",
      "V=12 #Shear Force in kips\n",
      "h=7.3 #Depth of NA\n",
      "b=2 #Width in inches\n",
      "t=1.2 #Thickness in inches\n",
      "h2=7.5 #Depth in inches\n",
      "\n",
      "#Calculations\n",
      "#Shear Stress at NA\n",
      "Q=(b*h)*(h*0.5) #First Moment about NA in in^3\n",
      "tau=(V*10**3*Q)/(I*b) #Shear stress at NA in psi\n",
      "\n",
      "#Shear Stress at a-a\n",
      "Q_1=(t*h2)*(d-h2*0.5) #First moment about NA in in^3\n",
      "tau1=(V*Q_1)/(I*t) #Shear Stress in psi\n",
      "\n",
      "#Result\n",
      "print \"Comparing two stresses\"\n",
      "print \"The maximum stress is\",round(max(tau,tau1)),\"psi\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Comparing two stresses\n",
        "The maximum stress is 585.0 psi\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.10, Page No:175"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "sigma_w=1000 #Working Stress in Bending in psi\n",
      "tau_w=100 #Working stress in shear in psi\n",
      "#Dimensions\n",
      "b_out=8 #Width in inches\n",
      "h=10 #Depth in inches\n",
      "b_in=6 #Width in inches\n",
      "\n",
      "#Calculations\n",
      "I=((b_out*h**3)-(b_in*b_out**3))*12**-1 #Moment of inertia in in^4\n",
      "#Design for shear\n",
      "Q=(b_out*h*0.5*0.25*h)-(b_in*b_out*0.5*0.25*b_out) #First Moment about NA in in^3\n",
      "\n",
      "#Largest P\n",
      "P=(tau_w*I*2)/(1.5*Q) #P in shear in lb\n",
      "\n",
      "#Design for bending\n",
      "P1=(sigma_w*I)/(60*5) #P in bending in lb\n",
      "\n",
      "#Result\n",
      "print \"The maximum allowable P value is\",round(min(P,P1)),\"lb\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum allowable P value is 1053.0 lb\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5.11, Page No:182"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "A=2630 #Area in mm^2\n",
      "y_bar=536.6 #Neutral Axis depth from top in mm\n",
      "tau_w=100 #Allowable stress in MPa\n",
      "sigma_b_w=280 #Allowable bending stress in MPa\n",
      "d=0.019 #Diameter of the rivet in m\n",
      "t_web=0.01 #Thickness of the web in m\n",
      "I=4140 #Moment of inertia in m^4\n",
      "V=450 #Max shear allowable in kN\n",
      "\n",
      "#Calculations\n",
      "Q=A*y_bar #first moment in mm^3\n",
      "Fw=(pi*d**2)*tau_w*10**6 #Allowable force in N\n",
      "Fw_2=d*t_web*sigma_b_w*10**6*0.5 #Allowable force in N\n",
      "e=Fw_2*I*(V*10**3*Q*10**-3)**-1 #Allowable spacing in m\n",
      "\n",
      "#Result\n",
      "print \"The maximum spacing allowed is\",round(e*1000,1),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum spacing allowed is 173.4 mm\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}