summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_James_M._Gere/chapter8.ipynb
blob: 1f7c0ed9b3d1512b9a0253353b381dde32394486 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
{
 "metadata": {
  "name": "",
  "signature": "sha256:0d2067363679e9ceade333ea9bc4385c2fb9b29e28a336c6f2561c38a5e262ab"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: Applications of Plane Stress Pressure Vessels Beams and Combined Loadings"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1, page no. 546"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "d = 18                                  # inner idameter of the hemisphere in inch\n",
      "t = 1.0/4.0                                 # thickness of the hemisphere in inch\n",
      "\n",
      "\n",
      "#calculation\n",
      "# Part (a)\n",
      "sa = 14000                                # Allowable tensile stress in Psi\n",
      "Pa = (2*t*sa)/(d/2.0)                     # Maximum permissible air pressure in Psi\n",
      "print \"Maximum permissible air pressure in the tank (Part(a)) is\", round(Pa,1), \"psi\"\n",
      "\n",
      "# Part (b)\n",
      "sb = 6000                                  # Allowable shear stress in Psi\n",
      "Pb = (4*t*sb)/(d/2.0)                      # Maximum permissible air pressure in Psi\n",
      "print \"Maximum permissible air pressure in the tank (Part(b)) is\", round(Pb,1), \"psi\"\n",
      "\n",
      "# Part (c)\n",
      "e = 0.0003                                # Allowable Strain in Outer sufrface of the hemisphere\n",
      "E = 29e06                                 # Modulus of epasticity of the steel in Psi\n",
      "v = 0.28                                  # Poissions's ratio of the steel\n",
      "Pc = (2*t*E*e)/((d/2.0)*(1-v))            # Maximum permissible air pressure in Psi\n",
      "print \"Maximum permissible air pressure in the tank (Part(c)) is\", round(Pc,1), \"psi\"\n",
      "\n",
      "# Part (d)\n",
      "Tf = 8100                                 # failure tensile load in lb/in \n",
      "n = 2.5                                   # Required factor of safetty against failure of the weld\n",
      "Ta = Tf / n                               # Allowable load in ld/in \n",
      "sd = (Ta*(1))/(t*(1))                     # Allowable tensile stress in Psi\n",
      "Pd = (2*t*sd)/(d/2.0)                       # Maximum permissible air pressure in Psi\n",
      "print \"Maximum permissible air pressure in the tank (Part(d)) is\", round(Pd,1), \"psi\"\n",
      "\n",
      "# Part (e)\n",
      "Pallow = Pb  \n",
      "print \"Maximum permissible air pressure in the tank (Part(e)) is\", round(Pb,1) ,\"psi\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum permissible air pressure in the tank (Part(a)) is 777.8 psi\n",
        "Maximum permissible air pressure in the tank (Part(b)) is 666.7 psi\n",
        "Maximum permissible air pressure in the tank (Part(c)) is 671.3 psi\n",
        "Maximum permissible air pressure in the tank (Part(d)) is 720.0 psi\n",
        "Maximum permissible air pressure in the tank (Part(e)) is 666.7 psi\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2, page no. 552"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "a = 55                              # Angle made by helix with longitudinal axis in degree\n",
      "r = 1.8                             # Inner radius of vessel in m\n",
      "t = 0.02                            # thickness of vessel in m\n",
      "E = 200e09                          # Modulus of ealsticity of steel in Pa\n",
      "v = 0.3                             # Poission's ratio of steel \n",
      "P = 800e03                          # Pressure inside the tank in Pa\n",
      "\n",
      "\n",
      "#calculation\n",
      "# Part (a)\n",
      "s1 = (P*r)/t                        # Circumferential stress in Pa\n",
      "s2 = (P*r)/(2*t)                    # Longitudinal stress in Pa\n",
      "\n",
      "print \"Circumferential stress is \", s1, \"Pa\"\n",
      "print \"Longitudinal stress is \", s2, \"Pa\"\n",
      "\n",
      "# Part (b)\n",
      "t_max_z = (s1-s2)/2.0               # Maximum inplane shear stress in Pa\n",
      "t_max = s1/2.0                      # Maximum out of plane shear stress in Pa\n",
      "\n",
      "print \"Maximum inplane shear stress is \", t_max_z, \"Pa\"\n",
      "print \"Maximum inplane shear stress is \", t_max, \"Pa\"\n",
      "\n",
      "# Part (c)\n",
      "e1 = (s1/(2*E))*(2-v)               # Strain in circumferential direction \n",
      "e2 = (s2/E)*(1-(2*v))               # Strain in longitudinal direction\n",
      "\n",
      "print \"Strain in circumferential direction is %e\"%(e1)\n",
      "print \"Strain in longitudinal direction is \", e2\n",
      "\n",
      "# Part (d)\n",
      "# x1 is the direction along the helix\n",
      "theta = 90 - a  \n",
      "sx1 = ((P*r)/(4*t))*(3-math.cos(math.radians(2*theta))) # Stress along x1 direction\n",
      "tx1y1 = ((P*r)/(4*t))*(math.sin(math.radians(2*theta))) # Shear stress in x1y1 plane\n",
      "sy1 = s1+s2-sx1  # Stress along y1 direction\n",
      "\n",
      "print \"Stress along y1 direction is \", sy1\n",
      "\n",
      "# Mohr Circle Method\n",
      "savg = (s1+s2)/2.0                    # Average stress in Pa\n",
      "R = (s1 - s2 )/2.0                    # Radius of Mohr's Circle in Pa\n",
      "sx1_ = savg - R*math.cos(math.radians(2*theta))             # Stress along x1 direction\n",
      "tx1y1_ = R*math.sin(math.radians(2*theta))                  # Shear stress in x1y1 plane\n",
      "print \"Stress along x1 direction is \", sx1_, \"Pa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Circumferential stress is  72000000.0 Pa\n",
        "Longitudinal stress is  36000000.0 Pa\n",
        "Maximum inplane shear stress is  18000000.0 Pa\n",
        "Maximum inplane shear stress is  36000000.0 Pa\n",
        "Strain in circumferential direction is 3.060000e-04\n",
        "Strain in longitudinal direction is  7.2e-05\n",
        "Stress along y1 direction is  60156362.5799\n",
        "Stress along x1 direction is  47843637.4201 Pa\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3, page no. 562"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "%matplotlib inline\n",
      "from matplotlib import *\n",
      "from pylab import *\n",
      "import numpy\n",
      "\n",
      "#initialisation\n",
      "L = 6.0                               # Span of the beam in ft\n",
      "P = 10800                             # Pressure acting in lb\n",
      "c = 2.0                               # in ft\n",
      "b = 2.0                               # Width of cross section of the beam in inch\n",
      "h = 6.0                               # Height of the cross section of the beam in inch\n",
      "x = 9.0                               # in inch\n",
      "\n",
      "#calculation\n",
      "Ra = P/3.0                                          # Reaction at point at A\n",
      "V = Ra                                              # Shear force at section mn \n",
      "M = Ra*x                                            # Bending moment at the section mn\n",
      "I = (b*h**3)/12.0                                   # Moment of inertia in in4\n",
      "y = linspace(-3, 3, 61)\n",
      "sx = -(M/I)*y                                       # Normal stress on  crossection  mn\n",
      "Q = (b*(h/2-y))*(y+((((h/2.0)-y)/2.0)))               # First moment of recmath.tangular cross section\n",
      "txy = (V*Q)/(I*b)                                   # Shear stress acting on x face of the stress element\n",
      "s1 = (sx/2.0)+numpy.sqrt((sx/2.0)**2+(txy)**2)       # Principal Tesile stress on the cross section\n",
      "s2 = (sx/2.0)-numpy.sqrt((sx/2.0)**2+(txy)**2)       # Principal Compressive stress on the cross section\n",
      "tmax = numpy.sqrt((sx/2)**2+(txy)**2)                # Maximum shear stress on the cross section\n",
      "plot(sx,y,'o',color='c')\n",
      "plot(txy,y,'+',color='m')\n",
      "plot(s1,y,'--',color='y')\n",
      "plot(s2,y,'<',color='k')\n",
      "plot(tmax,y,label=\"Maximum shear stress on cross section\")\n",
      "legend()\n",
      "show()\n",
      "#print \"Principal Tesile stress on the cross section\", s1, \"psi\"\n",
      "#print \"Principal Compressive stress on the cross section\", s2, \"psi\"\n",
      "\n",
      "# Conclusions \n",
      "s1_max = 14400.0                            # Maximum tensile stress in Psi\n",
      "txy_max = 900.0                             # Maximum shear stress in Psi\n",
      "t_max = 14400.0/2.0                         # Largest shear stress at 45 degree plane"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOX+x/H3sKuAIASIKLiloriVx9xRM1KzXLJyS8tO\nq0vl8XeyXLDSTmXHaDmVlcs5mpUWbSYtIpZatrhhkRoCiooruLHD/ftjmnGAYRiYGWbh+7ourwtm\nnnme+5mB25vPfOf7aJRSCiGEEC7Jzd4DEEIIYTsyyQshhAuTSV4IIVyYTPJCCOHCZJIXQggXJpO8\nEEK4MIsm+cLCQnr16kWPHj249tpreeyxx6w1LiGEEFagsbROvqCggEaNGlFaWkr//v157rnnGDx4\nsLXGJ4QQwgIWxzWNGjUCoLi4mLKyMkJDQy0elBBCCOuweJIvLy+ne/fuhIaGMnjwYKKjo60xLiGE\nEFZg8STv5ubG3r17yc7O5rvvviMlJcUKwxJCCGENHtbaUdOmTRk5ciQ//vgjsbGx+tvbtWtHenq6\ntQ4jhBANQtu2bfnzzz8t3o9FK/lz585x6dIlQPsG7DfffENMTEyFbdLT01FK1frfsBkzID4eOnUC\nb2/9/jQBAZCcrL9P4+FBl65d63QMa/xbtGiR3Y4t52fZv1mDZqGU4siiI3Yfi6O+dj//rAgJUZw4\nYf/zscX5OfI/ay2OLVrJnzhxgrvvvhulFIWFhUycOJGRI0daZWCzx4zhyPr1pL/+Onz3HXzwARw8\niPL2hkcegSNHoKgIBRw/e9YqxxQNR1HRCa6EfAok2HsoDquoCKZNg3//G5o3t/doRF1ZNMnHxMSw\nZ88ea42lgpFDhgDw6iefUAh4DR3KjrNnyT97Fk6dqrBtuU1GIFxZ3g/nKPM4S0Z8BlmLs/S3B8QG\nEBgbaMeROY6nn4Z27WDiRHuPRFjCapm8LYwcMkQ/2QPcBHwTHKxd1f+1kgcoLS0lbtYsijQavMrL\nuS4oiJysLFatWmXzMRq+/+CKXPX8AvoEcd0Bb1rPaA1A6/jW5KbkutQEb8lr9+uv8M47sG8faDTW\nG5M1uerPprU5VVuD2WPG0DY7G15/HebN0+b17u4Ul5Xx9ZgxbGvWjG+2bOH5JUv4ZffuehmTq/+g\nuer5aTQe9OjhXuG2vJQ8O43GNur62hUXwz33wLJlEBZm3TFZk6v+bFqbxZ94rfEAGg3WPMSm5GRe\n/fRTCgFvpTj4889kFRZqV/UGq/vA8HDOHz9ulWM2a9aM3Nxcq+xLCCEMBQYGcv78+Sq3W2vudLpJ\n3pBSivDOncnJyoL8/Ar3NQ0PJ89Kk7wtz0EI0bBVN79Ya95x6Ey+JhqNhpihQ8lxsJxeCCEchVNP\n8lBNqeWhQ/qcXnfbt4cP01laLgghGhinjmt0bJ3TS1wjhLAVW8c1LjHJGzKV0zcOCaH/nXdSCOT9\n+Sch5eV8k5RU4z4b+iTv5+dHamoqUVFR9h6KWVJSUpgyZQrHjh2z91CECzl69CidO3fm4sWLaKxY\nV2rrSd6pSijNocvp+b//q9ISoaCoiK+Dgvju22/Zn5zM9n372JScbMfRWi4qKgpvb2/OnTtX4fYe\nPXrg5ubG0aNHLT7GpUuXnGaCd2Tx8fFMmTLF3sMQZoqKiiLZYH5o1aoVly5dsuoEXx9cbpKHaurp\n3dxQhYXw3HOQlgZFRRSGhvLqp5/ae7gW0Wg0tGnThvXr1+tvS01NpaCgwOl+GJ2NrseIo+7PUTjr\nebnKX/AuOcmPHDKEhAkTiPvkEwaeO0e47oUqKtLn8zqFdhiftU2ePJn//ve/+u/XrFmj7ymk8/nn\nn9O1a1f8/f0JDQ3liSee0N/3wQcf0KZNG32zuc2bN9O8eXP9Xwdubm4cOXIEgGnTpvHwww8zcuRI\n/P39GTBgADk5OcyePZtmzZrRpk0bfvrpJ/2+DR+re/yCBQsAbawSERHBiy++SFhYGOHh4XzyySd8\n+eWXdOzYET8/P+Lj46s9708++YT27dvj6+tLeHg4L7zwQoX7//3vf9O8eXOCg4N588039bcXFBTw\n0EMPERISQmBgIFOnTqWgoACAvLw84uLiCA4Oxs/PjxtvvJGsrKttD2JjY5k/fz79+vXDz8+PjIyM\nKuOKj48nNDQUPz8/2rdvz5YtW0hKSuK5557jgw8+wM/Pjx49elS7v7179zJgwAD8/f2JjIys8NpW\nd84nT54kLi4OPz8/AgMD6devX7UT1JYtW+jSpQt+fn7ExMRUWK3GxsaycOFCBgwYgK+vLwMHDuTM\nmTPVvgbvvfcenTp1ws/Pj9atW5P0V/xp7LxMHffNN9+kVatW+Pr6EhkZydq1awFIS0ujb9+++Pr6\nEhQUxPjx442O4/Lly9x55500bdqUpk2bct1113H69GlA20hxwoQJNGvWjODgYObMmUN5+dVmKMuX\nL6d169b4+fnRsWNHdu/ezZQpUzh69CijRo3Cz8+PZcuWkZmZiZubm/6xmZmZDBs2DD8/PyIiIkhI\nuNoHKT4+njvuuIOpU6fStGlT2rVrxw8//FDt82hTysbq4RA1Ki8vV12HD1d06qTw9laA9l+3bqrn\n5Mnqppkz1cCZM1XX4cPVjXFxVR7vCOdQnaioKPXtt9+qDh06qLS0NFVaWqoiIiJUVlaW0mg0Kisr\nSyml1HfffacOHjyolFIqLS1NhYeHq/Xr1+v3M2nSJDVt2jR19uxZFR4erjZt2qS/T6PRqPT0dKWU\nUlOnTlXBwcHqwIEDqqioSA0bNkxFRkaq999/Xyml1MKFC1Xfvn2NPlYppaZNm6YWLFiglFJq69at\nysPDQy1dulQppdS7776rgoKC1N13360KCgrUb7/9pho1aqQOHTpk9NybNWumtm/frpRS6tKlS2rf\nvn0V9vvMM8+o8vJy9eWXXyovLy91/vx5pZRSf//739XYsWPVxYsXVX5+vho9erSaPXu2Ukqp8+fP\nqy+++EKVlpaq/Px8NXnyZBVn8DMxaNAg1aZNG5Wenq7Ky8tVaWlphTHt379ftWzZUp08eVIppdTx\n48dVRkaGUkqp+Ph4NWXKlArbV97fmTNnVGhoqFq7dq1SSqnffvtNBQUFqd27dxs95/379yullHr8\n8cfVQw89pEpLS1V5ebn68ccfjT5nJ0+eVH5+fmrDhg1KKaU+/vhj5e/vr3JycvTjadeuncrKylIF\nBQUqNjZWPf7440b3lZycrAIDA9X333+vlFLq1KlT+p+xyud17Nixao+bm5ur/Pz89K/z2bNnVVpa\nmlJKqbFjx+p/PkpKStSuXbuMjuWVV15Ro0aNUgUFBUoppVJTU9XFixeVUkoNGzZMPfLII6qoqEid\nP39e9e7dWy1fvlwppdSqVatUZGSkOnDggFJKqczMTHX06FGllPZ3a8uWLfpjZGRkKI1Go8rKypRS\nSl133XXq8ccfV6WlpeqPP/5QYWFh6vPPP1dKKbVo0SLl4+Ojvv32W6WUUvPmzVM9e/Y0Ovbq5hdr\nzTsNYpJXSqkvtmxRbaZPV8TH6yd7z2uuUaG33VbhNp+wMPWFwQurVM3nANb5Vxe6Sf7ZZ59V8+bN\nU5s3b1Y33XSTKi0trTDJVzZnzhz10EMP6b/Py8tTrVq1UjExMerBBx+ssK3hRD1t2jR1//336+97\n/fXXVXR0tP77AwcOqCZNmhh9rO7x8+fPV0ppJ+NGjRqp8vJypZRSly9fVhqNRv3000/67Xv16qWf\nGCpr1aqVWrFihf6XWUe3X90vo1JKhYSEqO3bt6uioiLl4+NTYUw7d+5UzZs3N3qM1NRU1ahRI/33\nsbGx6tlnnzW6rVJKHT58WIWEhKgtW7ao4uLiCvctWrRITZ48ucJtlfe3evVqNWDAgArb3H///Wre\nvHkmz3nhwoVq9OjRFc7LmBUrVqj+/ftXuG3gwIHqzTff1I9nyZIl+vv+85//qKFDhxrd15QpU9QT\nTzxh9L7K52XquFeuXFEBAQEqMTFR5efnV9jm7rvvVg888IA6fvy4yfNauXKl6tu3r0pNTa1we2Zm\npvL29tZP/kop9d5776k+ffoopZQaMGCA/twrMzXJHzp0SHl5eVUY78KFC9Vdd92llNK+1sOGDdPf\n99tvvykPDw+jx7H1JO+ScY0xI4cM4ZWJE4k7f56BN95I1yFD8AJOHTpkcU5vrWm+rjQaDVOmTGHd\nunVGoxqA77//nn79+tGsWTMCAwN5/fXXuXLliv7+pk2bcvvtt3PgwAHmzJlj8nghISH6r728vCp8\n7+3tTVGlSMyUoKAg/XsH3n+9SW54nWBvb2+Ki4uNPvbDDz/ks88+IzIykv79+/P9999X2K+b29Uf\n78aNG1NUVMSZM2coKiriuuuuIzAwkMDAQIYPH87FixcBuHDhAtOmTaNFixYEBATQr18/ioqKKjyf\nzU303W3Xrh0vvfQSCxYsIDQ0lNtvv53s7GyTz4Hh/rKzs9m1a5d+bIGBgbz33nv6thrVnfM//vEP\nWrVqxY033khUVBRLliwxeqxTp07RsmXLCre1atVKH20AhBk0rGnUqFG1r2dOTg5t2rQx67xMHbdx\n48a89957vPrqq4SHh3PzzTfz22+/AfCvf/2L4uJievXqRadOnVixYoXRY02ZMoWhQ4dyxx130Lx5\ncx5//HGKi4vJzs6mpKSE5s2b65/PBx98kAsXLph1DtU5deoUQUFB+mtcA7Rs2ZJTBh1yDX+OGzdu\nTFlZWYWYqL40mEketBN9UkICKQkJXBcWRmFenn5yN+SMOX2rVq1o06YNmzdvZuzYsVXunzBhApMn\nT+b06dPk5uYyY8aMCj9we/fuZdWqVUycOJGZM2dabVyenp7kG5Synj171mpvCPfu3ZvPP/+cs2fP\nMn78eO64444aHxMUFISnpyeHDx8mNzeX3Nxc8vLyuHz5MgAvvvgix48fZ9++feTl5bFjx45av3E4\nefJkduzYwdGjR/H29mbu3LkAZp138+bNufHGG/Vjy83N5dKlS7zxxhsmz9nPz4+EhASOHDnC5s2b\neeWVV/jqq6+q7D8sLKxKxdXRo0crTEjmCg8Pr/B+iyk1HXf48OFs2bKFU6dOERMTw3333Qdon4+V\nK1dy/PhxVq5cyaxZszh06FCV/Xt4ePD000/z+++/89NPP/HVV1+xatUqmjdvjq+vL+fPn9c/nxcu\nXND/J2LqHEy9XqGhoZw7d07/Xg7AsWPHKvwH6Sga1CSvo9FoePfdd+l8441VyiwBLp0/T9ysWQya\nNYtuI0bYaZS19+6775KcnFxhdaGTn59PkyZN8PDwYM+ePaxbt07/Q1xYWMjkyZN57rnn9L9Qukml\nstpMdgDdunVj3bp1lJeXk5yczNatW2t/YkaUlJTw4YcfcuXKFdzc3PD19a2wcq+Oj48PU6ZMYc6c\nOeTlabtO5uTksGXLFkD7PHl6euLn58fFixd55plnquzD1HNw+PBhvv/+e0pLS/Hy8sLb21s/rqCg\nII4dO1bl8Ybfjxkzhr1797Jx40b9ym/Pnj0cPHjQ5DknJSWRmZkJgK+vL+7u7kafj1tuuYX9+/fz\n8ccfA9o3cvfs2cOtt95q1vkZmjZtGitWrGDnzp2AdnV7+PBho/sxddzTp0+zefNmioqK8PDwoHHj\nxvqxf/LJJ+Tk5ADg7++Pm5ub0cn3u+++Iy0tDYAmTZrg6emJm5sbbdq0oVevXjz55JP6v1yzsrLY\nsWMHAPfccw/PP/88v//+O6B9M1X3+YpmzZoZfWMdoH379nTp0oUFCxZQVlbGwYMHefvtt5kwYYJZ\nz119apCTPGgn+qX/+Adt+va9Wmbp7Y3niRMcv3SpQj29s2jTpg09e/bUf2/4y/Daa68xb948mjZt\nysKFCxk3bpz+vnnz5hEZGckDDzyAl5cXa9euZf78+frLjxnuR6PRmPy+8vYJCQls2LCBwMBAVq9e\nzW233Vbttsa+N+Wdd94hIiKCJk2a8Nprr7Fu3Tqz9vPaa68RGBhIp06d8Pf3Z9CgQRw4cACAxx57\njAsXLhAYGMgNN9zA0KFDazXGwsJCHnvsMQIDAwkODubEiRM8//zzAIwfP56CggKaNm3K9ddfb3R/\ngYGBJCUl8eabb9KsWTOCgoJ47LHHKCwsNHnOv//+OwMHDqRJkyb06tWL6dOnM2zYsCrjCwsL46OP\nPmLhwoX4+vqyYMECEhMTK6xAa3p9dWJjY3nllVeYNm0afn5+9OnTp8Kq2PBxpo5bVlbGkiVLCAkJ\nwd/fny1btuirobZv306PHj1o0qQJI0aM4IUXXqB9+/ZVxpKdnc2tt96Kr68v7du3p0+fPkybNg2A\nDRs2cOLECSIjI/H392fUqFH6vyqmTp3KjBkzGD58OH5+fowYMUJfVTZ37lwWLFhAQEAA//73v6uc\n08aNG9m7dy8BAQEMGTKE//u//2PUqFHVPm/2Kml2uU+81pauJUKBUuT9+Sfpv/zCleDgCu0QoPYr\nWCGEMIe0NagnSimmT5/Of9eupaykxOj9QghhbTLJ1yOlFN1HjmR/Zqas5IUQ9UJ619Sj6nJ6IYRw\nVrKSN6JyTr9/82anOwchhHOQuMaOdDn9qlWrnPYchBCOTSZ5O1NK4ebm5tTnIIRwXHKNVzvTaDT4\n+ftL214hhE0EBgbadP+ykjeTLqfPLy/nQGIiuSdOVG04060bgwYNIsWg5ahwbDt2XEOvXr/h5RVi\n9P7clFzyUvIozCzk1JpTRC6KBCAgNoDAWNv+clqipAS6dYOlS2H0aHuPRtSFxDV2VG2pZbdu9IyJ\nISgggOPp6eRlZrLitdcYOWSIXccrqvfTT52Jjv4AX98uNW6bEZ/h8JO7zssvQ1ISbN4M8keoc5K4\nxo50pZaz3nuPI3feCR98AEeO4HniBOleXuy+fFk7+XfsyOy/rtgkE71j8vIKoaTkdM0b/iUvJc/h\nJ/lTp2DJEvj+e5nghYV18seOHWPgwIHExMTQoUOHKlfmcWWGrYsHDB1KZKdOlF+4wIX9+yt0tkyf\nNMnpLzHoyjp2/C/+/jeYtW1AbICNR2MdTz4JU6dCx472HolwBBat5L28vPjPf/5Dly5duHz5Mj17\n9iQuLo5u3bpZa3wObeSQIYwYPJjp06ezNz2dsmr6njtj6+KGwsenZY3b6HJ5gKzFVy8F6IjRzS+/\nwJdfwh9/2HskwlFYNMmHhobq+0H7+vrStWtXTpw40WAmebjatnjEiBFMnzGDi3l5VfrTXzp/nptm\nzpSc3kkFxgZWmMwdcXIHbR3A7Nnw7LPQtKm9RyMchdXaGmRmZvLzzz/Tv39/a+3SaWg0Gm6//XbW\nrVtHSL9+FdohhK5YQfrBg3yzZQu/JydzwsuL2evXs8mJWhiLinSrekfz/vtQUAB/ddgVArDSG6+X\nL19m/PjxJCQk4OfnZ41dOqVbhg5lpUbDK598wrE//yRn/34uffUV+VeuVFjdp0+axKuJibKad0IB\nsQEOOcnn58M//wnr1oG7u71HIxyJxZN8SUkJ48aNY+LEiYyupiA3Pj5e/3VsbCyxsbGWHtZhGeb0\nG7dvJ//SJaPbSU7vXBw9l//3v6F3bxgwwN4jEXWVkpJCSkqK1fdrUZ28UoqpU6cSFBTE8uXLjR/A\nBevkzaGU4qOPPqqa03frBi+/TM9335V6egdQVlbAzz/H0Lv3YbM/1exo9fInT0JMDPz0E9ThmtTC\nQTlEq+EdO3awdu1atm7dSo8ePejRowdJSUkWD8oVSE7vHNzdG1FScpbS0tpFMI4U2cyfD9OnywQv\njLMorunfvz/l5eXWGotLkpze8Xl7R1BUdBRPT/NW5o6Uy+/bB5s2wcGD9h6JcFRy0ZB6MHLIEJIS\nErghLIzSixfJP3++SpklQHZuLt1GjCAsOpq4WbNkZV9PfHwiKSzMqnG73JRcMuIzyEvJI2txFmnT\n0siIzyA3JbceRmnc3LmwYIGUTIrqSVuDemKynl4p2LaN3z/9FFVUBB078vXYsaSvWwdISwRb8/GJ\nMmuSr1wvD9A6vrWthlWjr76CrCy4/367DUE4AVnJ1yOjOb2nJxw+DE8/jbp4sWqEIy0RbE67ks+0\n9zBqpaxMu4p//nntj5AQ1ZGVvB3cMnQo7wIPzJjBybIyVElJtdtKqaXthYc/jEZj3q9C5dbDOvVd\nbbN2Lfj7w2231dshhZOSVsN2pCuzXLZsGT//+ivlpaXaO/4qswTo8c47lJ0/z6nMTLrdeCOzRo+W\n+MZB2KuUsrAQOnSA9euhb996PbSoRw5RQikso4tvfvjhB/7vqafwvuYafZklStF0wQJSv/yS/cnJ\nnPLy4uuxY6XU0sHYo8rm9dehZ0+Z4IV5ZCXvQL7YsoWnXnqJrP37obSUS2fPUl5Wpr3TYHUfl5hI\nklx9yu500U19vvmalwfXXgvbtmnf0hGuSy4a4oJGDhnCx+vWkbF9O5eqaYcAktPbmz1bHLz4Iowa\nJRO8MJ9M8g7EsMyySk6voxRH9+yhRXQ07YcNw1spyemtRKkyNJqau3vZq/XwqVPw5puwZ4/NDyVc\niGTyDqbanP6vWnqP8ePJ2LGDE15ebBszRnJ6Kzl69EUyMubX6bH1lcsvWQJTpkCrVvVyOOEiZJJ3\nUBqNhufi49nw3ntEduqEx6FDuD37LKXnzkGlVhJST285H59I8vNr3xugvi4JmJWlbSP85JP1cjjh\nQiSucWBKKRLfe4/z6emUFppI4pXi9337JMKxQOPG0eTnp5m9feVcvjCzEJ8oH5tFN88+Cw8+CCEh\nVt+1cHEyyTuwyhl9amoq+fn5VzdQCr77Dj74gGMHD0JMDCfGjAGQlgi11LhxewoLMykvL8bNzavG\n7euzxUF6OiQmwqFDNtm9cHES1zg4w4x+zZo1XNupExoPD20t3SOPwHPPQVqaRDgWcnPzxts7koKC\nw/YeShVPPw0zZ0KzZvYeiXBGspJ3ErrJfuzYsXS/7jpS9+3TruRNkFLL2vH17UZhYSZNmnQ2a/v6\naHFw+DB8+SX8+adVdicaIJnknYybmxv7du/Wt0OoEuGAPsZJ/eIL4pSiSKORnN4M0dHvm311KKgY\n2dgqj3/2WZg1S1oJi7qTSd4J6Vb148aN46OPPuKphQs5fPiw9tNx27bBBx/AoUNcCgjg67Fj9Y+T\nnN602kzwxuSl5Fl1kv/zT+0FQWQVLywhmbwT0032aQcOcNuYMXj+VWZJWhqUlVESEVFhe8npbccW\npZRLlsCMGRBQP1WawkXJSt7JKaW477772JKURImpMsu/SE5vXbZqcZCZCZ99Jqt4YTlpUOYCDFsW\nV8jodU3NdKWWP/5Iz+BgggMDJae3AWu2Hn7kEfDzg3/9ywoDE05JGpQJvcoZ/bJly9i7dy+cOkWR\nLqM/cgRPf39O9OvH7unT9Y+VnL6i0tKLlJbm4eNTt94B1sjlT57U9opPM/+zWUJUSzJ5F6Kb7Hfu\n3MkjjzyCd0HB1Yy+qAgvpciZPbvCYySnr+js2U9IT59bp8daK5dfvhwmT4bQUKvsTjRwspJ3MbqM\nfuPGjVXaFXt4Gf8kp+T0V/n59SIzM75Wj7FmLn/hArz7LuzeXauHCVEtmeRdjKlWCPoCQYOMnn/+\nk0vnzxM3a5bk9EDjxh0oKTlPcfEZvLyuMesxhvXyhZmFFrU3eOstGD4cIiPrvAshKpA3Xl1Y5Tdk\n27Rrx+ngYE6fPAlHjkDHjoR17gz5+RVinLbr1pEwYUKDnej37RtGixazCQ6+pdaP3RO7hx4pPep0\n3KIiaNNG+wnXbt3qtAvhQuQar6JGhhn9gw8+SM6JE1zYsUOf0QeeOUPz0lLJ6Svx97+Bixd/qNNj\nfaJ86nzc9euhc2eZ4IV1SVzj4kxl9F3bt4ewMN2GFSKc43l5DTbCCQwcxoUL35u9vWEmr+thU9s2\nB0pp33B94YXaj1cIU2SSd3E1tSv2Ki+/2grhrwgHIP34cQ7cc49+u4ZUahkQMJCAgIFmb2+NtsNb\nt0JJCdx0U60eJkSNJJNvQCpn9FFRUZQpxaHDh1G6a8l260ajqCgKBg+ukhvEJSaSlJBgh5E7j4z4\nDKD2k/ytt8Itt8D999tiVMIZOcyHoe699142bdpESEgIqampFg9I2I5hu+KhQ4eyfft2SitdKDzw\nzBnCO3bkNyPBsJRaVs+StsNHjsDOnfD++7YepWiILF7Jf//99/j6+nL33XcbneRlJe+YqmuFMGjQ\nILy7duXrMWMqZPQAPd99V1oimKG27Q3mztVm8suW2Xhgwqk4zEp+wIABZGZmWjwQUb+MtUJITU1F\nKUXPZs3YduedFF28qM/ow95+mxP5+dISwUzmtjcoKIDVq7X/lwphC1JC2cBVLrP8/fffeeXFFyk6\ncwaKimh65gxxiYkNstTy9OmNXL58oNaPq017gw8/hF69oG3bWh9GCLPUS3VNfHy8/uvY2FhiY2Pr\n47DCTKbKLLu3b09SQgKxlSZ4HVfO6S9d+oUrV/bh69vFrO3r0t7grbfgiScsH6twfikpKaSkpFh9\nv1aprsnMzGTUqFGSyTsxUxl9SkoKN82cyTfBwRUyenDtnD4vbxvp6f/guut+rvVj06al0Wl1J5Pb\n/PYbDBsGR4+ChxQzi0ocJpMXrsFURr9x40aObtmC5vBhVOerF7l29Zze378v+fmHKS4+jZdXSK0e\nW5hZ898477wD99wjE7ywLYtX8hMmTGDbtm2cO3eOkJAQnn76ae4x+BCNrOSdU3l5OXPnzuW///0v\n+fn5+pV9YHg4XW+/HR/gdE4Oex56qMpjXame/sCBsQQHjyEsbEqtHlfTSr6oCCIitH8YSR4vjHGY\nlfz69estHoRwLDW1Qtj68st89NFHzFi40OjjXaklQlDQKM6d+8ysSb427Q2+/BKio2WCF7YnfyiK\nKky1Qjhz5gx9+vQhNTUVr2quMO1KLRGCg0fTqFF7s7atTXuD//0P7r7b4uEJUSMpoRRG6TL6H374\ngdWrV9O+fXvc3NxIS0tj165d5OfnExEcTNu/JnCdRi+/TMGoURVuc+ZSS0/PQAIC+lt1n+fOwZYt\ncPvtVt3mv+2HAAAgAElEQVStEEbJSl7UaPPmzZw8eZLy8vIKtwcFBjJ3wgReTUykEPABsn18GnRL\nBHPaG2zcCHFx0LSpvUYpGhJpUCZqVFN5pe7+TZs2ccLPj6/Hjq2yD1cutaxOdW++Dh0KjzwCRp4m\nIfTkoiGi3hhGN2vWrKF37940btxYX17Zp08fpk6dypEjR5g1enSVCCfs7bc5cfkyX48dy7YxY/h6\n7Fhmr1/PpuRkO51R/TBWRnn6NPz6q/YSf0LUB1nJi1qrrrxSt7LflJzMq59+qo9wXKXUsrT0Ih4e\n/mZvb2wl/9ZbkJKivQqUEKY4TAmlaFhMlVfqjBwypEIU4wotEUpKctm1qx19+hzF3b1JtdtVLqPU\nXQ5Ql8knJsJ999XLkIUAZJIXtVTTlaaAChn9qlWr8K5mNXLp/Hmnqaf39AzE378PZ858RFhY9bWP\nhmWUhZmFFUooL13S9o3/8EObD1cIPcnkRa3VJqMHXCanDwubRk7OarO3r5zJf/st3HAD+Juf+Ahh\nMcnkhcVqyugBl8jpy8uL2LmzBddd9zONGtV8eb/Kmfy990KPHjBzpi1HKVyFZPLCIZiT0YNr5PRu\nbt6EhU3h5Mm3adNmqdFtqsvkmw4K4OuvA6WtsKh3MskLi9SU0VfO53WcNacPD3+IM2c2VHt/5dYG\nujdcDx4EjQbam9chQQirkUxeWKy6jF7X58Ywn9dx1py+ceNriYx8yuztdav6LVu0H4LSaGw1MiGM\nk5W8sBqNRsO4ceNQSvHkk09y8OBBysrK9PcZ0q3ODVsinC4tZY+xSwwmJjrUat5cAbEB+kl+61a4\n9VY7D0g0SDLJC6tRSjF9+nST+Xzl+MacnN7ZWhdXvgygUvBdUkueHHMFkIY1on7JJC+sxlQ+ryuv\n1N1+/fXXV3l8dTm9s7UuNszl81Ly8JjeGt6E7hNkghf1TzJ5YVXG8nlvb2/27NnD1KlT9W2KK8c3\nYDynd/TWxeXlxTVu88MP2vp4yeOFPchKXtiELp/ftGkT+/btM1leqWMsp3fk1sXHj7/B5ct76NBh\nRYXbDeOaC9su8G3xBdo3KiM3RVPloiJC2Jp8GErYlKk2xVu3bjVaXmkobtYsh21dXFJyjl27ruX6\n63fj4xNpdJu0aWk8erITM2fCLbfU6/CEk5NWw8Ip1KW80pAjl1p6egYRHv4AWVnPVbtNYWYhqakQ\nE1OPAxPCgMQ1ol7UprzSkKOXWkZEPM5PP3UgMnKe0dV8YVgTruyBVq3qdVhC6MkkL+qFOeWV1XHk\nlgheXsG0aPEwGRmL6NRpNVAxk//1g8u0blFI5uKTFS4BKER9kUle1Iu6tj8wxtFaIrRsObdCd0rD\nEsqCZC86hvtUaDksRH2SSV7UG10+P27cuApvxury+erq5yubNXo06evWkT5pkv62sLff5kR+Prun\nT9ffVl/19B4e/kREzDJ6X+YxDa372fTwQpgkk7yod3XN53UcPac3dNqzEV2j7HZ4IWSSF/Wvpnze\nnOjG3JzeHi0RDDP5E4f9cEs5RcbJfMnkhV3IJC/qnal8vrbRjY4jtUQwzOQvL79M55m+tO5rs8MJ\nYZLUyQu7MKyfX716Ne3bt8fNzY20tDSTrQ+q40gtEU6f3kBhYTYAeSUeBAXZ9HBCmGTxSj4pKYm5\nc+dSVlbG1KlT+ec//2mNcYkGZPPmzZw8eZLy8vI678ORWiKc/X0XmWfe5Zrf3iCvIIJL72SR0aRc\n4hphFxa1NSgqKqJjx45s376d0NBQ+vTpw4oVK+jRo8fVA0hbA1GD6lofDBw4kJkzZ5pVVmmMvVoi\nlJUV8ssv3WjTZimR4WM4neuGr6/Vdi8aCIdoa7Br1y46d+5MixYt8PDw4M4772TTpk0WD0o0LDV1\nrjTV9sAUe7VEcHf3oUOHdzl8eCbFZeDtbbVdC1FrFsU12dnZtGzZUv99REQEKSkplo5JNHBKKZRS\n+sqb2mTzhuxZahkQ0J9mzcZRDnhIeYOwI4t+/Mz95YuPj9d/HRsbS2xsrCWHFS7IkrYHptijJYKu\nhFLD/WhQHHk2FbcyX8nkhUkpKSk2WSRbNMlHRERw7Ngx/ffHjh2rsLLXMZzkhTDGmm0PTKmPlgi6\nEkqlQC1WRD0Zg7t7nYcsGojKC+DFixdbZb8WvfFaWFhIx44d2bFjByEhIfTt25e33nqLnj17Xj2A\nvPEqaqnyG7FRUVH4+fnpa+e3bdtW531vSk5m9vr1VVoikJ9PjsEqv+26dSRMmGBxhOPjXk7uZTca\nNbJoN6IBstbcadFK3sfHhzfeeIO4uDjKy8uZMmVKhQleiLqwtO2BKfWd03u6K4qKkEle2I3FbwkN\nHz6c4cOHW2MsQgC2y+d1bJ3TG7Y1aFzSnAPxJ2gRUCqZvLALed9fOBxT+bxSio0bN1qczRuydk5v\n2NYg6NVCGt/dktY9Qakyjhx5klat5uHh4WeVsQtRE2lrIBySrWrnjbFlPX1TVczZs9qvNRp3SkrO\ncujQ/fI+lag3spIXTsFatfPG2DKnDwpQnD599ft27RLYvbsPJ078hxYtHrHC6IUwTSZ54bBMZfPW\njm2s2brYMJP3z3Bn76oy+v15QZ/Jd+nyEbt396VJkxgCAgZaPHYhTJFJXjgsU9m8LrapTTvi2rCk\ndbFhJt/6vaOcbtOM1vHN9Pc3atSWTp3+y++/30XPnj/h4xNhi1MQApBMXjg4XTa/c+dOHnzwQZo0\naQLApUuXat2OuDas1bo43KeYjIyqtzdrFse1176Fp6dU2wjbkpW8cHhKKe677z42btzIlStX6uWY\nlrQuNoxrAlLPkdY0ioz4Y1VKKIODRyGErVn0iVezDiCfeBVWYKt2xLVRl9bFB+5Oo/dHnTh5Evz9\nbTo84WIcotWwEPWlPksqq1OXUsuSo4VER8OBAzYfnhBGSVwjnJItSyqrU5dSS58oH2LcIDUV+tZw\nndeysisUFKTj69vVNicgGiSZ5IXTsHW7A3OYU2rZbS/c8GNHMuIzOLXmFK1uDiFlhSd3dCgz2dbg\n0qXd/Pbb7XTvvpUmTaJtMn7R8EhcI5yGrqRy5cqV9O7dm8aNG+vvO3PmDPcYlDbWF2Ollvu6w+fX\n7uTB88vZ2zGLJP9V/JjrVmPfmoCAAbRt+yL79w+nqOi4rYYsGhiZ5IVTMczmV69eTfv27XFzcyMt\nLa1ecvnKasrp8Y5k1329yDrmwYbPa26RHBZ2Ny1aPMz+/cMpKcmz1bBFAyJxjXA6ukqbl156iezs\nbMrLy4H6yeUrqymnzwkDPBWqYxEvrDzA+FGDatxny5b/R1HRcQ4cuI2uXZNwd5c+xaLuZJIXTsUR\ncvnKKuf008Y9Q9fV2q9v/ko70e/W5FGUVrXG3hiNRkO7di9z4sSbaDTyKyosI3GNcCqmcnldPxt7\nZPOGTrY4w5ppsLc7rJ4Ka6ZB6rRc0s+FETdrFrGzZxM3a5bJjpYajRstWjyMm5tnvY1buCb5MJRw\nWoYfkNq7dy9eXl6UlZVZfIlAS+kuMdi/RHuJwTXTIPTN1Zz+6A1U4i/gq73KlbUuMShck3wYSoi/\nGNbM27KfjblGDhlCwoQJtEtLg0vfE5eYSLgqQHUrgL1XK2xq6nsjhDVI4CeckqlsXldOaes2B8bo\n+tZE05omP7kxaXgkAIuz17LnhvPwYzPof1a/fSHalf8rn3xS4xWoSksvcPr0h4SH/72+Tke4AJnk\nhVMy1YY4LS2N4OBgu4zLsM1wXkoereNbA3By1hnofQ7Wt4Ry9H9DXzp/ntnr15M+aZJ+H8baFwOU\nlxeTnf0yxcU5REUtsP3JCJcgcY1wWhqNhnHjxjFnzhzCw8P1MY1Syu6RTWWzRo+mbco74FsKh7TX\nd227di2quLjCBA/VxzheXtfQrdsWTp1ay9Gjz9fLuIXzk5W8cFqOWE5p2Gb4wrYLZMRrm8n3je1B\nwgSYsecHyt8tp1PfTcycOJEXq8nkK7cv1vH2DqN792T27BkEaGjV6v9scBbClUh1jXBqjtCCuDpp\n09LotLpThdt++QUmToSDB0GjqVv7YoDCwmz27RtC27YvSV96F2WtuVMmeeESHLGcck/sHnqk9Kg0\nTmjTBhIToXv3q+WWhpFN2NtvQ34+OQbNz4yVWxYXn8HTsxkajbvtT0bUO2vNnRLXCJdijxbE1fGJ\n8qlym0YDd9wBH36oneTr0r5Yx8vrGlsOX7gImeSF03OkbN4wkz+15pR+oje89N9dd8HYsfDss+Dm\nZl77Yqg+pxfCFJnkhdMzVU5Z3zXzuhLK3JRcAH0JpaHu3aFJE9i+HQYOrLoPY+2LQVtuGTdrlsl6\n+tLSS7i7+zpcdZGwHymhFC7B0VoQ61bzxmg0cPfd8L//Gb+/LpcZ1ElPn8Phww+jVLnF5yBcQ50n\n+Q0bNtC5c2fc3d3ZvXu3NcckRJ0Ya0Fsz5r5gNiAau+bNAk++ggKCqrep2uLEJeYyKDEROISE2le\nWlrhjVgwXk/ftu0yrlz5jT/+uIfy8lKrnIdwbnWurvnjjz9wc3PjgQce4KWXXqJnz57GDyDVNaIe\nmMrlo6Oj+dvf/mbzyMYwj89anEXkIm1LA8M83tDw4dpyyilTat537OzZbBszpsrtXVatIrxp0woR\nzs2DbuDAgbG4uzeiU6f1uLtXfQNYOD67V9d07NjR4oMLYS2O0OagupYG1fn73yEhwbxJvrqcPv34\ncQ4YtFZOX7eOBGB47GekpU0mNfUWYmI+lwuPNGCSyQuX4UxtDgBuuUX7oahDh2re1lhO3+jllykY\nVfGDULoIx83Ni+jo9YSGTsbNzduawxZOxuRKftiwYeTk5FS5fenSpYwaZf6n7OLj4/Vfx8bGEhsb\na/ZjhTCXvUspq2tpUF1c4+UFU6fCihWwbJnpfRurp8/28eG3blWvNqUrtdRo3GnefFodz0bUt5SU\nFFJSUqy+X4s/8Tp48GDJ5IXDqK7NQX3l8nB1sq8prgE4cgR694ajR6FRLROVurZEEM7BoS4aIpO4\ncBSOUEppqnyysjZt4G9/g/ffr/1x6lpqKb+vDUudJ/nExERatmzJjz/+yMiRIxk+fLg1xyVEnTlC\nKaWp8snKHn4YXn9d29emNupSaqlUOfv23Uhu7tbaHUw4rTpX14wZM4YxRkq6hLAne+XylcsnQbui\nry6PN3TzzTBrFvzwA/TtW7vj1rYlgkbjRmTkfH7//U7at3+NkJA7andA4XSkrYFwKfZqcWBOO4Pq\nuLtrJ/mXX679JF+ZuS0RHh29hD//fJzi4lNERMy07KDCoUkJpXA59szla5PHG7r3XtiyBbKyLDu+\nuTn9zPU/kVf4AsePv056+hOS07swWckLl2Qsl4f6aT1cmzxex88Ppk2D116DF1+s+7Fr07r4lcRE\nPntxO6dOVdNER7gEmeSFy6nvXN6SPN7QrFnQsyfMnw9Nm9Z9PLXJ6b28gmnZ8rG6H0w4PLkylHBJ\n9qqXN3bJv9qYNEnbinjuXOuNSerpnZND1ckL4WjslcsXZlp2aY+5c7VvwBYVWWlA1K2eXhZmrkPi\nGuGy7JHLG7vkX2107w6dO8O6ddo3Y62htpcYHB47kL17B9G69TMEBsrK3tlJXCNckqlcPjQ01GhP\nprrSZfKFmYWcWnOqxhbDNdm6FR54ANLStOWVtlBT6+Lm1xxnfK/NeHjNJG7I87YZhDBJ4hohTNDV\ny69cuZLevXvj7X21E2OBsSt1WCAwNpDW8a3xifIhclEkreNb0zq+dZ0meIDYWAgO1l5UxFZMtS7+\neuxY1gyYycM+b3Dxyht8vXWqLNScmEzywuUppSpMUo7YdtiQRgNPPglLl9a+1YG5zGldfJRIHvBb\nzdncr/jjj6lySUEnJZm8cEmm4hofH+tdKaly+WTo1FAy4jPqHNXojBypLaX8/HO49VZrjdZg/2a2\nLs6lGau2j2VI3z5oNLImdEaSyQuXVZ9llLVpL2yujz6C556Dn3/Wru5tTUotHYtk8kLUoD7LKOva\nzsCUMWO0pZRffmn1XRtV19bFwrFJXCNcWn2WUdalnYEpbm6wcCEsXgwjRth+NV/bUsu4gdfh4WHB\nR3NFvZBJXrgsW7c3sFY7A1PGjYOnn9au5keOtMouTTK/JYIiNXUUAQGxREXFS17vwOSVES6rchll\n48aN9ffp2g5bQlc6GRAbYJXSSWPc3LQr+YULbVdpY0r1rYtzefq9a/l+9zu8ua4Dm5LrKVMStSaT\nvHBp9ZHL2yKPNzRmjHaC/+QTmx7GKFM5/ScjJ3Nf0GqyI6I4fX4aXyZvqP8BihpJXCNcXn3k8tbO\n4w1pNNrV/JNPwm23aVf39aWmnL4EL5byJJOD13L7lemUlt6Mh4df/Q1Q1EhKKIVLs1V7A2u3MqiJ\nUtqrRs2cCRMnWn33tVJdS4ShHy/HnUgptbQSa82dspIXLq3y5QD37t1L0V8tHi1pb6C73F9GfIY+\nj7cljUb7Cdi//x3GjwdPT5sezqTqcvqdv1+hYP7VOvv0v2IemejtSzJ50WA4W3uDygYPhtatYeVK\n+47DnJYI8Fep5aef1ufQhBGykhcuzRbtDWzVysAcS5dq34idMgUMioXqlbktEQACA05TVHQSb+/m\n9TtIoSeZvHB5tmpvYItWBuYYPx6uuw6eeKJeD2tSdS0RZv84lyFd/+D9XSM5lxsiOX0tSFsDIcxk\nqzJKW5dOVmfJEnjpJTh/3i6HN6q6UssPdkWwrPFc7hicRMnYAGmJYAcS14gGwVZllLYsnazOtdfC\n7bdro5tly+r98EaZKrXMAU4QzjMsYMukobya+Ims5uuRTPLC5VmzvUF9tDIwx6JF2ssEzpgBUVH1\ndliTTLVESKcdD/MfFrGYgsAO9hhegyWZvGgQqsvl61orb6883tDixXDokPZ6sI7IeE6v6PnuSmld\nbAbJ5IWoBV0uv3PnTh588EGaNGkC1L1W3l55vKE5cyAlBX75xd4jMc54Tv+OtC6uZ3WOax5//HGS\nkpIAaNOmDWvWrCEoKMhqAxPCmqpbyTdq1KjO+7RHHm/I1xfi4+Ef/9Be/NvRyv5r27pYVvO2Uee4\nZuvWrQwaNAg3NzeeeOIJioqKWL58edUDSFwj7MxUJj9o0CBSUlLM2k/lPN7WrQzMUVoKPXrAM8/A\n6NF2GUKtGGuJ0IVU7s16g1mTf8Xdve7/6boau7c1GDx4sP7rfv368b///c/iwQhhC5VbGxiu5P/4\n4w+z96NrZZCbkgtg1zxex8NDW075yCPaC4t4edl7RKYZa4nwJ+2gLJ8PP4ti/a6RFOX7Sk5vRVbJ\n5FesWMFtt91mjV0JYRPWzOQdIY83dNNN0L49vP66vUdSM2M5fcDba3nh8+58Fjiau2/+jBNj20tO\nb0UmV/LDhg0zWnmwdOlSRv3Vp2LJkiV4eXkxadIk24xQCCuwdiZv7zy+smXLYNAgbbuD4GB7j6Z6\n1ef0j/I+kE5bFrOIFZPu59XET2U1bwUWlVCuWbOGt956i+Tk5Gr7gGg0GhYtWqT/PjY2ltjY2Loe\nUohaM5XJm9vaoL5bC9fFjBnalsTOsKI3VDmnD+c4QZxDrfqV8KZNG0ypZUpKSoX3hxYvXmyVTL7O\nk3xSUhJz5sxh27ZtBJtYOsgbr8IRVLeS12g0DBgwgG3btpm1n4z4DMAx8vjKzp2DTp1gyxaIibH3\naMxXXd+bRs8+S8H8+frv265bR8KECS490Ruye538zJkzuXz5MsOGDaNHjx48/PDDFg9GCFvRaDSM\nGzeOOXPmEB4erm9noJRyupbD1QkKggUL4LHH7HM92LqS1sW2VefqmsOHD1tzHELYlCWtDezZWri2\nHnwQ3nxTez1YIxdvckjmti5uzyEKcaL/vRyEtDUQDYalrQ0coZWBOb79Fu6/H377DSz4rJddVY5w\nPCjhPzxM3qFyUn6P44rydPmc3u5xjRDOxtIySkcrnazOjTdqPyDlKB0q66JyhFOKJ0tW9aREFXHb\n6G/5Y0wfaYlgJulCKRoMa5RROlrpZHVeekl7YZGpU6FVK3uPpvaMlloWwlMd/sd4NvAfHmYJT7Fb\nWiLUSCZ50SCYyuQ7duxY7eMcpbVwbUVFwcyZ2iZmGzbYezR1Y7x1sYYN3MGftOMh3mAGr1FovyE6\nBcnkRYNhSSbvLHm8oYICbc/5t96CYcPsPRrLVc7pNZSjcKPnu++6ZOtiyeSFqCVLMnlnyeMNNWoE\nL7+s/ZBUUZG9R2O5yjm9wo2wt9+W1sU1kJW8aDAsWck7aslkTZSCUaOgf3/HuvB3XW1KTubVTz+9\nmtPn5LDnoYcMtlCAhrjERJISEuwzSCux1twpk7xoEOrS2iA3JZec1Tn4RPk4TGvhukhPh9694ddf\nITLS3qOxrsotEcbzIc04zw+rPQnzd+4Ix+6thoVwJqbaDaelpRltzREYG1ghh3emPN5Q27YwezY8\n+igkJtp7NNZVuXXxV8TxFEuIHnyY+Mh3yaUZAOl/xTzONtFbg2TyosFoCK0NqjN3rvbDUZs22Xsk\n1lU5p79IU55OaM4e7968xQN0IRVo2C0RZCUvGgxzWxsYK5sszCwkNyXXqWIaQz4+8Npr2rYHgwdD\n48b2HpF1GG2J4N2I1WGPkcaPLGYRCczmOwY12FJLyeRFg1KbN1+dsWyyJnfdBW3awNKl9h6J7RiW\nWoZxkiK8yaWZ05VaSgmlEHVQmzJKZyybrMny5fD229roxlUZRjg5NCeXZg261FLiGtGg1La1gbO0\nMTBX8+YQHw8PPQQpKeDmgsu86q8+NbvCdukNpCWCTPKiwTCntYGztjGojQcfhP/+F1atgunT7T0a\n2zDeEkHLjTJu41O+4JYGkdNLJi8aFHMzeVfM4w3t26dtdXDgAISE2Hs0tmeY0/tQwJMsJZizfPRB\nR9w9WzpkTi+ZvBB1YG4m74p5vKFu3WDaNO1VpBoCw5y+kEYs5Gl+/bERM27ZTO7YCJfO6SWuEQ1K\nbTJ5V8vjK1u0SHst2K++grg4e4/Gtozl9Ltz2vPTDdNYwDNsZjhrmOqSOb1M8qLBqCmTbwh5vKEm\nTeCNN7QZ/YED2u9dmbGcfhtdeYC3GMdH+ttdLaeXTF40KDVl8roPPGXEZ7hsHl/ZlCnaXP6ll+w9\nkvpVuXWxjqPU00smL0Qd1JTJu3oWb8zy5bBuHfz8s71HUr8qt0QAXLKeXuIa0aCYm8m7eh5vKDhY\nu4qfPh1++QW8vOw9ovpRUz19IOcpw93pc3qJa0SDYSqTD24SzHe3f8epNaectqWwJZSCkSOhb1+Y\nP9/eo7Efw9bFI/mCyazlaRbivmoX4U2b1muEI62Ghailyu2G9+7dS9Ffl0wqdi/GJ8qHyEWRDSaL\nN6TRaC8T2LMnjB0L0dH2HpF9GLYu3sQt5BHAEp5iQ4trWH/TW4C2W6kztS6WTF40SEqpCqskV281\nbI6WLeHpp7WxTVmZvUdjH5Vz+h305/GV1zOgfxFPsxBftH8BOlPrYpnkRYOhi2vuvfdefvrpJ4qL\ni/X3eZZ6krU4i8LMQjLiM8hNybXjSO3ngQe0mfwrr9h7JPYxcsgQEiZMIC4xkUGJicQlJtKkOIjZ\njd/mNCEMZ7N+W2cptZRMXjQopkoof3jwhwYZ1VT2559www3w44/Qrp29R2N/FUsttdeQBduXWkoJ\npRB1UJtWww1Vu3bw1FPa2Ka83N6jsb+KEY52gnemUss6r+Tnz5/P559/TllZGc2aNWP16tW0adOm\n6gFkJS8ciKmVfNr7aQ2mmqYmZWUwYABMnAgzZth7NPa3KTmZVz/99GqpZU4Oex56CAAviijGG4C4\nxESSEhKscky7r+SfeOIJ9u3bx4EDBxg/fjyLFy+2eDDOKCUlxd5DsClXOj/DTH7Xrl36CR4g0ieS\nvJQ8l8riLXnt3N1h5Upt7/kjR6w2JKuqz5/NkUOGkJSQQEpCAkkJCfiHhQGgoZz/8DC3swFQDpnT\n13mS9/X11X99+fJlmjdvbpUBORtXmgSNcaXz05VQrly5kt69e+PhfrWCOKswi9bxrV1qJW/pa9ex\nI8ybB/fc45ixjT1/NnWllgo3nmIJQ0hmCU9RduUkcbNmETt7NnGzZjlEfGNRJv/UU0/RqlUr1qxZ\nwxNPPGGtMQlhM4aZfExYjGTyNXj0USgthddft/dIHIthTn+KMGbxCuf35zL7ti84Mba9Q+X0Jif5\nYcOGERMTU+Xf559/DsCSJUs4evQo06ZN47GG0phaODWlFBs3bqRv376knkzlypUrQPWX/2vo3N21\nV5BavBjS0+09GsdRudRyaOIXJO/oykt+C1jEYq7hNOAY9fRWKaE8evQoN910E3/88UeV+9q1a0e6\n/HQIIUSttG3blj///NPi/dS5rUFGRgatW2trij/99FNiYmKMbmeNQQohhKibOq/kx44dS3p6OiUl\nJbRu3Zp33nmnwb75KoQQjsrmn3gVQghhPxZV18yfP59u3brRpUsXBg4cyBGDgtrnnnuO6OhoYmJi\n+Prrr/W3//rrr/To0YPOnTsz+6++zQBFRUXceeedxMTE0K9fP7KysiwZmlU8/vjjREdHEx0dzS23\n3MK5c+f097nC+W3YsIHOnTvj7u7O7t27K9znCudnSlJSEjExMURHR/P888/bezhmuffeewkNDa0Q\njZ4/f55hw4bRtWtX4uLiyMu7etGT2r6G9nbs2DEGDhxITEwMHTp04IUXXgBc5xwLCwvp1asXPXr0\n4Nprr9UXq9j8/JQFLl26pP/6lVdeUXfffbdSSqlffvlFXX/99aq0tFRlZ2erqKgoVVxcrJRSKiYm\nRu3evVsppdRtt92mPv74Y6WUUsuWLVOzZ89WSimVmJiobr31VkuGZhXJycmqrKxMKaXUP//5T/Xo\no48qpVzn/NLS0tTBgwdVbGys+vXXX/W3u8r5VaewsFBFRUWp7OxsVVJSoq6//nr9OTmy7777Tu3e\nvVoGz1MAAARiSURBVFt16dJFf9uMGTPU8uXLlVJKLV++XM2aNUspVbfX0N5ycnJUamqqUko7t7Rv\n317t3bvXpc4xPz9fKaVUSUmJ6t27t0pOTrb5+Vm0kq/uA1GbNm3irrvuwt3dnRYtWtC5c2d27drF\n0aNHKS8vp0ePHgBMnjyZTZs2AfDll18yZcoUAG699VZ27txp93YIgwcPxs1N+xT169eP48ePA65z\nfh07duTaa6+tcrurnF91du3aRefOnWnRogUeHh7ceeed+vNwZAMGDCAwsOKHtQyfd8PXoy6vob2F\nhobSpUsXQDu3dO3alePHj7vUOepKdYuLiykrKyMkJMTm52dxgzLdB6JWr17NvHnzADh+/DgRERH6\nbSIiIsjOzub48eO0bNlSf3uLFi3Izs4GIDs7W3+fm5sbQUFBnD592tLhWc2KFSu47bbbANc8P0Ou\nfn6GY4Wr5+eMzpw5Q1BQEADBwcH657wur6EjyczM5Oeff6Z///4udY7l5eV0796d0NBQBg8eTOfO\nnW1+fjWWUA4bNoycnJwqty9dupRRo0axZMkSlixZwr/+9S8effRRVq1aZf4ZO4Cazg+0H/ry8vJi\n0qRJ9T08i5lzfg2NXCDEsV2+fJnbb7+dhIQE/P397T0cq3Jzc2Pv3r1cuHCBuLg4tm7davNj1jjJ\nf/PNN2btaOLEidx0002A9n+cY8eO6e/TrZyqu133mKNHjxISEkJ5eTnnzp3jmmuuqdXJ1EVN57dm\nzRo2bdpEssFHk13p/IxxpvOri8rncezYsQorI2dyzTXXcPbsWYKDgzlz5gwhISFA7V5Dw9WivZWU\nlDBu3DgmTZrE6NGjAdc7R4CmTZsycuRIdu3aZfPzsyiuycjI0H9t+IGoESNG8MEHH1BaWkp2djYH\nDhzgb3/7Gy1btsTNzY09e/YAsG7dOoYPH65/zNq1a/X76tOnjz4Pt5ekpCReeOEFPvvsM3x8fPS3\nu8r5GTLMz13x/Az16tWLAwcOcPz4cUpKSvjwww/15+FsDJ/3tWvXMmLECP3t5r6GusfYm/qrS2h0\ndHSFNimuco7nzp3TX0C+oKCAb775hpiYGNufnyXvFI8ZM0Z17dpVderUSY0YMUKdOHFCf9+SJUtU\np06dVOfOnVVSUpL+9l9++UV1795dRUdHq5kzZ+pvLywsVOPHj1ddunRRffr0URkZGZYMzSratWun\nWrVqpbp37666d++uHnroIf19rnB+H3/8sYqIiFA+Pj4qNDRU3Xzzzfr7XOH8TPnyyy9V586dVadO\nndTSpUvtPRyz3HXXXap58+bK09NTRUREqJUrV6pz586pG2+8UcXExKhhw4ap3Nxc/fa1fQ3t7fvv\nv1cajUZ169ZN/zu3efNmlznH/fv3q+7du6tu3bqpDh06qMWLFyullM3PTz4MJYQQLswx/54WQghh\nFTLJCyGEC5NJXgghXJhM8kII4cJkkhdCCBcmk7wQQrgwmeSFEMKFySQvhBAu7P8BMfbstPHLNmYA\nAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x263ff90>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4, page no. 570"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "d = 0.05                                # Diameter of shaft in m\n",
      "T = 2400                                # Torque transmitted by the shaft in N-m\n",
      "P = 125000                              # Tensile force\n",
      "\n",
      "#calculation\n",
      "s0 = (4*P)/(math.pi*d**2)               # Tensile stress in\n",
      "t0 = (16*T)/(math.pi*d**3)              # Shear force \n",
      "# Stresses along x and y direction\n",
      "sx = 0 \n",
      "sy = s0 \n",
      "txy = -t0  \n",
      "s1 = (sx+sy)/2.0 + math.sqrt(((sx-sy)/2.0)**2 + (txy)**2)   # Maximum tensile stress \n",
      "s2 = (sx+sy)/2.0 - math.sqrt(((sx-sy)/2.0)**2 + (txy)**2)   # Maximum compressive stress \n",
      "tmax =  math.sqrt(((sx-sy)/2)**2 + (txy)**2)            # Maximum in plane shear stress \n",
      "print \"Maximum tensile stress %e\" %s1, \"Pa\"\n",
      "print \"Maximum compressive stress %e\" %s2, \"Pa\"\n",
      "print \"Maximum in plane shear stress %e \" %tmax, \"Pa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum tensile stress 1.346662e+08 Pa\n",
        "Maximum compressive stress -7.100421e+07 Pa\n",
        "Maximum in plane shear stress 1.028352e+08  Pa\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5, page no. 573"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "\n",
      "#initialisation\n",
      "P = 12                              # Axial load in K\n",
      "r = 2.1                             # Inner radius of the cylinder in inch\n",
      "t = 0.15                            # Thickness of the cylinder in inch\n",
      "ta = 6500                           # Allowable shear stress in Psi\n",
      "\n",
      "#calculation\n",
      "p1 = (ta - 3032)/3.5                # allowable internal pressure\n",
      "p2 = (ta + 3032)/3.5                # allowable internal pressure\n",
      "p3 = 6500/7.0                       # allowable internal pressure\n",
      "\n",
      "prs_allowable = min(p1,p2,p3)              # Minimum pressure would govern the design\n",
      "print \"Maximum allowable internal pressure \", round(prs_allowable), \"psi\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum allowable internal pressure  929.0 psi\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.6, page no. 574"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "d1 = 0.18                                   # Inner diameter of circular pole in m\n",
      "d2 = 0.22                                   # Outer diameter of circular pole in m\n",
      "P = 2000                                    # Pressure of wind in Pa\n",
      "b = 1.5                                     # Distance between centre line of pole and board in m\n",
      "h = 6.6                                     # Distance between centre line of board and bottom of the ploe in m\n",
      "\n",
      "#calculation\n",
      "W = P*(2*1.2)                               # Force at the midpoint of sign \n",
      "V = W                                       # Load\n",
      "T = W*b                                     # Torque acting on the pole\n",
      "M = W*h                                     # Moment at the bottom of the pole\n",
      "I = (math.pi/64.0)*(d2**4-d1**4)            # Momet of inertia of cross section of the pole\n",
      "sa = (M*d2)/(2*I)                           # Tensile stress at A \n",
      "Ip = (math.pi/32.0)*(d2**4-d1**4)           # Polar momet of inertia of cross section of the pole\n",
      "t1 = (T*d2)/(2*Ip)                          # Shear stress at A and B\n",
      "r1 = d1/2.0                                 # Inner radius of circular pole in m\n",
      "r2 = d2/2.0                                 # Outer radius of circular pole in m\n",
      "A = math.pi*(r2**2-r1**2)                   # Area of the cross section\n",
      "t2 = ((4*V)/(3*A))*((r2**2 + r1*r2 +r1**2)/(r2**2+r1**2))  # Shear stress at point B \n",
      "\n",
      "# Principle stresses \n",
      "sxa = 0\n",
      "sya = sa\n",
      "txya = t1\n",
      "sxb = 0\n",
      "syb = 0\n",
      "txyb = t1+t2 \n",
      "\n",
      "# Stresses at A\n",
      "s1a = (sxa+sya)/2.0 + math.sqrt(((sxa-sya)/2)**2 + (txya)**2)                 # Maximum tensile stress \n",
      "s2a = (sxa+sya)/2.0 - math.sqrt(((sxa-sya)/2)**2 + (txya)**2)                 # Maximum compressive stress \n",
      "tmaxa =  math.sqrt(((sxa-sya)/2)**2 + (txya)**2)                            # Maximum in plane shear stress\n",
      "\n",
      "print \"Maximum tensile stress at point A is\", s1a, \"Pa\"\n",
      "print \"Maximum compressive stress at point A is\", s2a, \"Pa\"\n",
      "print \"Maximum in plane shear stress at point A is\", tmaxa, \"Pa\"\n",
      "\n",
      "# Stress at B \n",
      "s1b = (sxb+syb)/2.0 + math.sqrt(((sxb-syb)/2)**2 + (txyb)**2)                 # Maximum tensile stress \n",
      "s2b = (sxb+syb)/2.0 - math.sqrt(((sxb-syb)/2)**2 + (txyb)**2)                 # Maximum compressive stress \n",
      "tmaxb =  math.sqrt(((sxb-syb)/2.0)**2 + (txyb)**2)                            # Maximum in plane shear stress \n",
      "print \"Maximum tensile stress at point B is\", s1b, \"Pa\"\n",
      "print \"Maximum compressive stress at point B is\", s2b, \"Pa\"\n",
      "print \"Maximum in plane shear stress at point B is\", tmaxb, \"Pa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum tensile stress at point A is 55613361.197 Pa\n",
        "Maximum compressive stress at point A is -700178.455718 Pa\n",
        "Maximum in plane shear stress at point A is 28156769.8263 Pa\n",
        "Maximum tensile stress at point B is 6999035.59641 Pa\n",
        "Maximum compressive stress at point B is -6999035.59641 Pa\n",
        "Maximum in plane shear stress at point B is 6999035.59641 Pa\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7, page no. 578"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "b = 6                           # Outer dimension of the pole in inch\n",
      "t = 0.5                         # thickness of the pole\n",
      "P1 = 20*(6.75*24)               # Load acting at the midpoint of the platform\n",
      "d = 9                           # Distance between longitudinal axis of the post and midpoint of platform\n",
      "P2 = 800                        # Load in lb\n",
      "h = 52                          # Distance between base and point of action of P2\n",
      "\n",
      "#calculation\n",
      "M1 = P1*d                       # Moment due to P1\n",
      "M2 = P2*h                       # Moment due to P2\n",
      "A = b**2 - (b-2*t)**2           # Area of the cross section\n",
      "sp1 = P1/A                      # Comoressive stress due to P1 at A and B\n",
      "I = (1.0/12.0)*(b**4 - (b-2*t)**4)  # Moment of inertia of the cross section\n",
      "sm1 = (M1*b)/(2*I)              # Comoressive stress due to M1 at A and B\n",
      "Aweb = (2*t)*(b-(2*t))          # Area of the web\n",
      "tp2 = P2/Aweb                   # Shear stress at point B by lpad P2\n",
      "sm2 = (M2*b)/(2*I)              # Comoressive stress due to M2 at A \n",
      "sa = sp1+sm1+sm2                # Total Compressive stress at point A\n",
      "sb = sp1+sm1                    # Total compressive at point B \n",
      "tb = tp2                        # Shear stress at point B\n",
      "\n",
      "# Principle stresses \n",
      "sxa = 0\n",
      "sya = -sa\n",
      "txya = 0\n",
      "sxb = 0\n",
      "syb = -sb\n",
      "txyb = tp2 \n",
      "\n",
      "# Stresses at A\n",
      "s1a = (sxa+sya)/2 + math.sqrt(((sxa-sya)/2)**2 + (txya)**2)             # Maximum tensile stress \n",
      "s2a = (sxa+sya)/2 - math.sqrt(((sxa-sya)/2)**2 + (txya)**2)             # Maximum compressive stress \n",
      "tmaxa =  math.sqrt(((sxa-sya)/2)**2 + (txya)**2)                        # Maximum in plane shear stress\n",
      "print \"Maximum tensile stress at point A is\", s1a,\"Psi\"\n",
      "print \"Maximum compressive stress at point A is\", round(s2a,2), \"Psi\"\n",
      "print \"Maximum in plane shear stress at point A is\", round(tmaxa,2), \"Psi\"\n",
      "\n",
      "# Stress at B \n",
      "s1b = (sxb+syb)/2 + math.sqrt(((sxb-syb)/2)**2 + (txyb)**2)             # Maximum tensile stress \n",
      "s2b = (sxb+syb)/2 - math.sqrt(((sxb-syb)/2)**2 + (txyb)**2)             # Maximum compressive stress \n",
      "tmaxb =  math.sqrt(((sxb-syb)/2)**2 + (txyb)**2)                        # Maximum in plane shear stress\n",
      "print \"Maximum tensile stress at point B is\", round(s1b,2), \"Psi\"\n",
      "print \"Maximum compressive stress at point B is\", round(s2b,2), \"Psi\"\n",
      "print \"Maximum in plane shear stress at point B is\", round(tmaxb,2), \"Psi\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum tensile stress at point A is 0.0 Psi\n",
        "Maximum compressive stress at point A is -4090.91 Psi\n",
        "Maximum in plane shear stress at point A is 2045.45 Psi\n",
        "Maximum tensile stress at point B is 13.67 Psi\n",
        "Maximum compressive stress at point B is -1872.69 Psi\n",
        "Maximum in plane shear stress at point B is 943.18 Psi\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}