summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb
blob: d7c23e2c9fa3dfd1ba78e4bd75a56ff47216a0bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
{
 "metadata": {
  "name": "",
  "signature": "sha256:da6f3f49063c862fcfbad93321317f9b628a844507de164f29b9e55b975bec08"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3: Torsion"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.1, page no. 196"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "d = 1.5                         # diameter of bar in inch\n",
      "L = 54.0                        # Length of bar in inch\n",
      "G = 11.5e06                     # modulus of elasticity in psi \n",
      "\n",
      "#calculation\n",
      "\n",
      "# Part (a)\n",
      "T = 250.0                           # torque\n",
      "t_max = (16*T*12)/(math.pi*(d**3))  # maximum shear stress in bar\n",
      "Ip = (math.pi*(d**4))/32            # polar miment of inertia \n",
      "f = (T*12*L)/(G*Ip)                 # twist in radian\n",
      "f_ = (f*180)/math.pi                # twist in degree\n",
      "print \"Maximum shear stress in the bar is \", round(t_max), \" psi\"\n",
      "print \"Angle of twist is\", round(f_,2), \" degree\"\n",
      "\n",
      "#Part (b)\n",
      "t_allow = 6000                          # allowable shear stress\n",
      "T1 = (math.pi*(d**3)*t_allow)/16        #allowable permissible torque in lb-in\n",
      "T1_ = T1*0.0831658                      #allowable permissible torque in lb-ft\n",
      "f_allow = (2.5*math.pi)/180             # allowable twist in radian\n",
      "T2 = (G*Ip*f_allow)/L                   # allowable stress via a another method\n",
      "T2_ = T2*0.0831658                      #allowable permissible torque in lb-ft\n",
      "T_max = min(T1_,T2_)                    # minimum of the two\n",
      "print \"Maximum permissible torque in the bar is\", round(T_max), \" lb-ft\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum shear stress in the bar is  4527.0  psi\n",
        "Angle of twist is 1.62  degree\n",
        "Maximum permissible torque in the bar is 331.0  lb-ft\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.2, page no. 197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "T = 1200.0                                # allowable torque in N-m\n",
      "t = 40e06                               # allowable shear stress in Pa\n",
      "f = (0.75*math.pi)/180.0                # allowable rate of twist in rad/meter\n",
      "G = 78e09                               # modulus of elasticity\n",
      "\n",
      "#calculation\n",
      "\n",
      "# Part (a) : Solid shaft\n",
      "d0 = ((16.0*T)/(math.pi*t))**(1.0/3.0)\n",
      "Ip = T/(G*f)                            # polar moment of inertia\n",
      "d01 = ((32.0*Ip)/(math.pi))**(1.0/4.0)        # from rate of twist definition\n",
      "print \"The required diameter of the solid shaft is \", round(d0,5), \"m\"\n",
      "\n",
      "# Part (b) : hollow shaft\n",
      "d2 = (T/(0.1159*t))**(1.0/3.0)              # Diamater of hollow shaft in meter\n",
      "d2_ = (T/(0.05796*G*f))**(1.0/4.0)          # Another value of d2 by definition of theta(allow), f = T/(G*Ip)\n",
      "d1 = 0.8*d2_                                # because rate of twist governs the design\n",
      "print \"The required diameter of the hollow shaft is \", round(d2,5), \"m\"\n",
      "\n",
      "# Part (c) : Ratio of diameter and weight\n",
      "r1 = d2_/d01                            # diameter ratio\n",
      "r2 = ((d2_**2.0)-(d1**2.0))/(d01**2.0)        # Weight Ratio\n",
      "print \"Ratio of the diameter of the hollow and solid shaft is\", round(r1,2)\n",
      "print \"Ratio of the weight of the hollow and solid shaft is\", round(r2,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The required diameter of the solid shaft is  0.05346 m\n",
        "The required diameter of the hollow shaft is  0.06373 m\n",
        "Ratio of the diameter of the hollow and solid shaft is 1.14\n",
        "Ratio of the weight of the hollow and solid shaft is 0.47\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3, Page number 200"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "R1 = 0.6*1    #assumption for simplicity in calculations(for fig. a)\n",
      "R2 = 1        #assumption for simplicity in calculations(for fig. b)\n",
      "\n",
      "#Calculations\n",
      "Ip1 = (math.pi/2)*(1-(R1**4))\n",
      "Ip2 = (math.pi*R2**4)/2\n",
      "\n",
      "B1 = Ip2/Ip1\n",
      "B2 = Ip2/Ip1\n",
      "\n",
      "Wh = (math.pi*R2**2)*(1-R1**2)\n",
      "Ws = math.pi*R2**2\n",
      "B3 = Wh/Ws\n",
      "\n",
      "print \"Maximum shear stress in the hollow shaft to that in the solid shaft is\",round(B1,2)\n",
      "print \"The ratio of the angles of twists is\",round(B2,2)\n",
      "print \"The ratio of the weight of the hollow shaft to the weight of the solid shaft is\",B3\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum shear stress in the hollow shaft to that in the solid shaft is 1.15\n",
        "The ratio of the angles of twists is 1.15\n",
        "The ratio of the weight of the hollow shaft to the weight of the solid shaft is 0.64\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.4, page no. 205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "d = 0.03                                # diameter of the shaft in meter\n",
      "T2 = 450.0                                # Torque in N-m\n",
      "T1 = 275.0  \n",
      "T3 = 175.0  \n",
      "Lbc = 0.5                               # Length of shaft in meter\n",
      "Lcd = 0.4                               # Length of shaft in meter\n",
      "G = 80e09                               # Modulus of elasticity\n",
      "\n",
      "#calculation\n",
      "Tcd = T2-T1                             # torque in segment CD\n",
      "Tbc = -T1                               # torque in segment BC\n",
      "tcd = (16.0*Tcd)/(math.pi*(d**3))         # shear stress in cd segment\n",
      "\n",
      "print \"Shear stress in segment cd is\", round(tcd/1000000,1), \" MPa\"\n",
      "tbc = (16.0*Tbc)/(math.pi*(d**3))         # shear stress in bc segment\n",
      "\n",
      "#answer given in the textbook for tbc is wrong\n",
      "print \"Shear stress in segment bc is\", round(tbc/1000000,1), \" MPa\"\n",
      "Ip = (math.pi/32)*(d**4)                # Polar monent of inertia\n",
      "fbc = (Tbc*Lbc)/(G*Ip)                  # angle of twist in radian\n",
      "fcd = (Tcd*Lcd)/(G*Ip)                  # angle of twist in radian\n",
      "fbd = fbc + fcd                         # angle of twist in radian\n",
      "print \"Angles of twist in section BD\", round(fbd,3), \" radian\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Shear stress in segment cd is 33.0  MPa\n",
        "Shear stress in segment bc is -51.9  MPa\n",
        "Angles of twist in section BD -0.011  radian\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.6, page no. 214"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math\n",
      "\n",
      "#initialisation \n",
      "d1 = 0.06                             # Inner diameter in meter\n",
      "d2 = 0.08                             # Outer diameter in meter\n",
      "r = d2/2.0                            # Outer radius\n",
      "G = 27e09                             # Modulus of elasticity\n",
      "T = 4000.0                            # Torque in N-m\n",
      "\n",
      "#calculation\n",
      "Ip = (math.pi/32)*((d2**4)-(d1**4))         # Polar moment of inertia\n",
      "t_max = (T*r)/Ip                            # maximum shear stress\n",
      "print \"Maximum shear stress in tube is \", t_max, \" Pa\"\n",
      "s_t = t_max                                 # Maximum tensile stress\n",
      "print \"Maximum tensile stress in tube is \", s_t, \" Pa\"\n",
      "s_c = -(t_max)                              # Maximum compressive stress\n",
      "print \"Maximum compressive stress in tube is \", s_c, \" Pa\"\n",
      "g_max = t_max / G                           # Maximum shear strain in radian\n",
      "print \"Maximum shear strain in tube is \", round(g_max,4), \" radian\"\n",
      "e_t = g_max/2.0                               # Maximum tensile strain in radian\n",
      "print \"radian\",e_t,\"Maximum tensile strain in tube is \", round(e_t,4), \" radian\"\n",
      "e_c = -g_max/2.0                              # Maximum compressive strain in radian\n",
      "print \"Maximum compressive strain in tube is \", round(e_c,4), \" radian\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum shear stress in tube is  58205236.3308  Pa\n",
        "Maximum tensile stress in tube is  58205236.3308  Pa\n",
        "Maximum compressive stress in tube is  -58205236.3308  Pa\n",
        "Maximum shear strain in tube is  0.0022  radian\n",
        "radian 0.00107787474687 Maximum tensile strain in tube is  0.0011  radian\n",
        "Maximum compressive strain in tube is  -0.0011  radian\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.7, page no. 219"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "H = 40.0                          # Power in hp\n",
      "s = 6000.0                        # allowable shear stress in steel in psi\n",
      "\n",
      "#calculation\n",
      "# Part (a)\n",
      "n = 500.0                                     # rpm\n",
      "T = ((33000.0*H)/(2*math.pi*n))*(5042.0/420.0)    # Torque in lb-in\n",
      "d = ((16.0*T)/(math.pi*s))**(1.0/3.0)             # diameter in inch\n",
      "print \"Diameter of the shaft at 500 rpm\", round(d,2), \" inch\"\n",
      "\n",
      "# Part (b)\n",
      "n1 = 3000.0                                    # rpm\n",
      "T1 = ((33000.0*H)/(2*math.pi*n1))*(5042.0/420.0)   # Torque in lb-in\n",
      "d1 = ((16*T1)/(math.pi*s))**(1.0/3.0)            # diameter in inch\n",
      "print \"Diameter of the shaft at 3000 rpm\", round(d1,2), \" inch\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter of the shaft at 500 rpm 1.62  inch\n",
        "Diameter of the shaft at 3000 rpm 0.89  inch\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.8, page no. 221"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "\n",
      "d = 0.05                        # diameter of the shaft\n",
      "Lab = 1.0                         # Length of shaft ab in meter\n",
      "Lbc = 1.2                       # Length of shaft bc in meter\n",
      "Pa = 50000.0                      # Power in Watt at A\n",
      "Pb = 35000.0                      # Power in Watt at B\n",
      "Ip = (math.pi/32)*(d**4)        # Polar moment of inertia\n",
      "Pc = 15000.0                      # Power in Watt at C\n",
      "G = 80e09                       # Modulus of elasticity\n",
      "f = 10.0                          # frequency in Hz \n",
      "\n",
      "#Calculations\n",
      "Ta = Pa/(2*math.pi*f)           # Torque in N-m at A\n",
      "Tb = Pb/(2*math.pi*f)           # Torque in N-m at B\n",
      "Tc = Pc/(2*math.pi*f)           # Torque in N-m at B\n",
      "Tab = Ta                        # Torque in N-m in shaft ab\n",
      "Tbc = Tc                        # Torque in N-m in shaft bc\n",
      "tab = (16*Tab)/(math.pi*(d**3))         # shear stress in ab segment\n",
      "fab = (Tab*Lab)/(G*Ip)                  # angle of twist in radian\n",
      "tbc = (16*Tbc)/(math.pi*(d**3))         # shear stress in ab segment\n",
      "fbc = (Tbc*Lbc)/(G*Ip)                  # angle of twist in radian\n",
      "fac = (fab+fbc)*(180.0/math.pi)           # angle of twist in degree in segment ac\n",
      "tmax = Tab                              # Maximum shear stress\n",
      "\n",
      "#Result\n",
      "print \"The maximum shear stress tmax in the shaft\", round(tmax), \" Nm\"\n",
      "print \"Angle of twist in segment AC\", round(fac,2), \" degree\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum shear stress tmax in the shaft 796.0  Nm\n",
        "Angle of twist in segment AC 1.26  degree\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.10, page no. 230"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "\n",
      "#initialisation\n",
      "Ta = 100.0                          # Torque in N-m at A\n",
      "Tb = 150.0                          # Torque in N-m at B\n",
      "L = 1.6                             # Length of shaft in meter\n",
      "G = 80e09                           # Modulus of elasticity\n",
      "Ip = 79.52e-09                      # polar moment of inertia in m4\n",
      "\n",
      "#calculation\n",
      "\n",
      "Ua = ((Ta**2)*L)/(2*G*Ip)           # Strain energy at A\n",
      "print \"Torque acting at free end\", round(Ua,2), \" joule\"\n",
      "Ub = ((Tb**2)*L)/(4*G*Ip)           # Strain energy at B\n",
      "print \"Torque acting at mid point\", round(Ub,2), \" joule\"\n",
      "a = (Ta*Tb*L)/(2*G*Ip)              # dummy variabble\n",
      "Uc = Ua+a+Ub                        # Strain energy at C\n",
      "print \"Total torque\", round(Uc,2), \"joule\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Torque acting at free end 1.26  joule\n",
        "Torque acting at mid point 1.41  joule\n",
        "Total torque 4.56 joule\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.11, page no. 231"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math \n",
      "t = 480.0                             # Torque of consmath.tant intensity\n",
      "L = 144.0                             # Length of bar\n",
      "G = 11.5e06                           # Modulus of elasticity in Psi\n",
      "Ip = 17.18                            # Polar moment of inertia\n",
      "\n",
      "#Calculation\n",
      "U = ((t**2)*(L**3))/(G*Ip*6)          # strain energy in in-lb\n",
      "\n",
      "#Result\n",
      "print \"The strain energy for the hollow shaft is\", round(U), \"in-lb\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The strain energy for the hollow shaft is 580.0 in-lb\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 3.14, page no. 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "r = 1     #assuming r = 1 for simplicity in calculations\n",
      "\n",
      "#Calculations\n",
      "Am2 = (math.pi*r)**2/4\n",
      "Am1 = math.pi*r**2\n",
      "\n",
      "T1_T2 = Am2/Am1\n",
      "\n",
      "t = 1   #assuming t = 1 for simplicity in calculations\n",
      "J2 = ((math.pi*r)**3*t)/8\n",
      "J1 = 2*math.pi*r**3*t\n",
      "phi1_phi2 = J2/J1\n",
      "\n",
      "#Results\n",
      "print \"Ratio of shear stress is \", round(T1_T2,2)\n",
      "print \"Ratio of angle of twist is \", round(phi1_phi2, 2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Ratio of shear stress is  0.79\n",
        "Ratio of angle of twist is  0.62\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}