1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
{
"metadata": {
"name": "",
"signature": "sha256:84b48278b7f3c96235822dbaf287a816273c08b171a3ad371f818f325de3125f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11: Columns"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1, page no. 763"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"E = 29000 # Modulus of elasticity in ksi\n",
"spl = 42 # Proportional limit in ksi\n",
"L = 25 # Total length of coloum in ft\n",
"n = 2.5 # factor of safety\n",
"I1 = 98 # Moment of inertia on horizontal axis\n",
"I2 = 21.7 # Moment of inertia on vertical axis\n",
"A = 8.25 # Area of the cross section\n",
"\n",
"#calculation\n",
"Pcr2 = (4*math.pi**2*E*I2)/((L*12)**2) # Criticle load if column buckles in the plane of paper\n",
"Pcr1 = (math.pi**2*E*I1)/((L*12)**2) # Criticle load if column buckles in the plane of paper\n",
"Pcr = min(Pcr1,Pcr2) # Minimum pressure would govern the design\n",
"scr = Pcr/A # Criticle stress\n",
"Pa = Pcr/n # Allowable load in k\n",
"print \"The allowable load is \", round(Pa), \"k\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The allowable load is 110.0 k\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2, page no. 774"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"L = 3.25 # Length of alluminium pipe in m\n",
"d = 0.1 # Outer diameter of alluminium pipe\n",
"P = 100000 # Allowable compressive load in N\n",
"n =3 # Safety factor for eular buckling\n",
"E = 72e09 # Modulus of elasticity in Pa\n",
"l = 480e06 # Proportional limit\n",
"\n",
"#calculation\n",
"Pcr = n*P # Critice load\n",
"t = (0.1-(55.6e-06)**(1.0/4.0) )/2.0 # Required thickness\n",
"\n",
"tmin = t \n",
"print \"The minimum required thickness of the coloumn is\", round(tmin*1000,2), \"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum required thickness of the coloumn is 6.82 mm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3, page no. 780"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"from sympy import *\n",
"\n",
"#initialisation\n",
"P = 1500 # Load in lb\n",
"e = 0.45 # ecentricity in inch\n",
"h = 1.2 # Height of cross section in inch\n",
"b = 0.6 # Width of cross section in inch\n",
"E = 16e06 # Modulus of elasticity \n",
"my_del = 0.12 # Allowable deflection in inch\n",
"\n",
"#calculation\n",
"L = mpmath.asec(1.2667)/0.06588 # Maximum allowable length possible\n",
"\n",
"#Result\n",
"print \"The longest permissible length of the bar is\", round(L), \"inch\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The longest permissible length of the bar is 10.0 inch\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4, page no. 785"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"from sympy import *\n",
"import math\n",
"\n",
"#initialisation\n",
"L = 25 # Length of coloum in ft\n",
"P1 = 320 # Load in K\n",
"P2 = 40 # Load in K\n",
"E = 30000 # Modulus of elasticity of steel in Ksi\n",
"P = 360 # Euivalent load\n",
"e = 1.5 # Ecentricity of compressive load\n",
"A = 24.1 # Area of the Cross section\n",
"r = 6.05 # in inch\n",
"c = 7.155 # in inch\n",
"sy = 42 # Yeild stress of steel in Ksi\n",
"\n",
"#calculation\n",
"\n",
"smax = (P/A)*(1+(((e*c)/r**2)*mpmath.sec((L/(2*r))*math.sqrt(P/(E*A))))) # Maximum compressive stress\n",
"print \"The Maximum compressive stress in the column \", round(smax,2), \"ksi\"\n",
"# Bisection method method to solve for yeilding\n",
"def stress(a,b,f):\n",
" N = 100\n",
" eps = 1e-5\n",
" if((f(a)*f(b))>0):\n",
" print 'no root possible f(a)*f(b)>0'\n",
" sys.exit()\n",
" if(abs(f(a))<eps):\n",
" print 'solution at a'\n",
" sys.exit()\n",
" if(abs(f(b))<eps):\n",
" print 'solution at b'\n",
" while(N>0):\n",
" c = (a+b)/2.0\n",
" if(abs(f(c))<eps):\n",
" x = c \n",
" return x\n",
" if((f(a)*f(c))<0 ):\n",
" b = c \n",
" else:\n",
" a = c \n",
" N = N-1\n",
" print 'no convergence'\n",
" sys.exit()\n",
"\n",
"def p(x): \n",
"\t return x + (0.2939*x*sec(0.02916*sqrt(x))) - 1012 \n",
"x = stress(710,750,p)\n",
"Py = x # Yeilding load in K\n",
"n = Py/P # Factor of safety against yeilding\n",
"print \"The factor of safety against yeilding is\", round(n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Maximum compressive stress in the column 19.32 ksi\n",
"The factor of safety against yeilding is 2.0\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5, page no. 804"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"import numpy\n",
"\n",
"#initialisation\n",
"E = 29000 # Modulus of elasticity in ksi\n",
"sy = 36 # Yeilding stress in ksi\n",
"L = 20 # Length of coloumn in ft\n",
"r = 2.57 # radius of gyration of coloumn\n",
"K = 1 # Effetive Length factor\n",
"\n",
"#calculation\n",
"s = math.sqrt((2*math.pi**2*E)/sy) # Criticle slenderness ratio (K*L)/r\n",
"s_ = (L*12)/r # Slenderness ratio\n",
"\n",
"# Part(a)\n",
"n1 = (5.0/3.0)+((3.0/8.0)*(s_/s))-((1.0/8.0)*((s_**3)/(s**3))) # Factor of safety \n",
"sallow = (sy/n1)*(1-((1.0/2.0)*((s_**2)/(s**2)))) # Allowable axial load\n",
"A = 17.6 # Cross sectional area from table E1\n",
"Pallow = sallow*A # Allowable axial load\n",
"print \"Allowable axial load is\", round(Pallow,2), \"k\"\n",
"\n",
"# Part (b)\n",
"Pe = 200 # Permissible load in K\n",
"L_ = 25 # Assumed length in ft\n",
"s__ = (L_*12)/r # Slenderness ratio\n",
"n1_ = (5.0/3.0)+((3.0/8.0)*(s__/s))-((1.0/8.0)*((s__**3)/(s**3))) # Factor of safety \n",
"sallow_ = (sy/n1_)*(1-((1.0/2.0)*((s__**2)/(s**2)))) # Allowable axial load\n",
"A = 17.6 # Area of the cross section in**2\n",
"Pallow = sallow_*A # Allowable load\n",
"L1 = [24, 24.4, 25]\n",
"P1 = [201, 194, 190]\n",
"L_max = numpy.interp(200.0, P1, L1)\n",
"print \"The maximum permissible length is\", L_max, \"ft\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Allowable axial load is 242.84 k\n",
"The maximum permissible length is 25.0 ft\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6, page no. 806"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"import numpy\n",
"\n",
"#initialisation\n",
"L = 3.6 # Length of steel pipe coloumn\n",
"d = 0.16 # Outer diameter in m\n",
"P = 240e03 # Load in N\n",
"E = 200e09 # Modulus of elasticity in Pa\n",
"sy = 259e06 # yeilding stress in Pa\n",
"K = 2.0\n",
"Le = K*L # As it in fixed-free condition\n",
"\n",
"#calculation\n",
"sc = math.sqrt((2*math.pi**2*E)/sy) # Critical slenderness ratio\n",
"\n",
"# First trial\n",
"t = 0.007 # Assumed thick ness in m\n",
"I = (math.pi/64)*(d**4-(d-2*t)**4) # Moment of inertia\n",
"A = (math.pi/4)*(d**2-(d-2*t)**2) # Area of cross section\n",
"r = math.sqrt(I/A) # Radius of gyration\n",
"sc_ = round((K*L)/r) # Slender ness ratio\n",
"n2 = 1.92 # From equation 11.80\n",
"sa = (sy/(2*n2))*(sc**2/sc_**2) # Allowable stress\n",
"Pa = round((sa*A)/1000) # Allowable axial load in N\n",
"\n",
"# Interpolation\n",
"t = [7, 8, 9]\n",
"Pa = [196, 220, 243]\n",
"t_min = numpy.interp(240.0, Pa, t)\n",
"print \"The minimum required thickness of the steel pipe is\", round(t_min,1), \"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum required thickness of the steel pipe is 8.9 mm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.7, page no. 808"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"#initialisation\n",
"\n",
"L = 16 # Effective length in inch\n",
"P = 5 # axial load in K\n",
"\n",
"#calculation\n",
"# Bisection method for solvong the quaderatic\n",
"def stress(a,b,f):\n",
" N = 100\n",
" eps = 1e-5\n",
" if((f(a)*f(b))>0):\n",
" print 'no root possible f(a)*f(b)>0'\n",
" sys.exit()\n",
" if(abs(f(a))<eps):\n",
" print 'solution at a'\n",
" sys.exit()\n",
" if(abs(f(b))<eps):\n",
" print 'solution at b'\n",
" while(N>0):\n",
" c = (a+b)/2.0\n",
" if(abs(f(c))<eps):\n",
" x = c \n",
" return x\n",
" if((f(a)*f(c))<0 ):\n",
" b = c \n",
" else:\n",
" a = c \n",
" N = N-1\n",
" print 'no convergence'\n",
" sys.exit()\n",
"def p(x): \n",
"\t return 30.7*x**2 - 11.49*x -17.69 \n",
"x = stress(0.9,1.1,p)\n",
"d = x # Diameter in inch\n",
"sl = 49.97/d # Slenderness ration L/r\n",
"dmin = d # Minimum diameter\n",
"print \"The minimum required outer diameter of the tube is\", round(dmin,2), \"inch\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum required outer diameter of the tube is 0.97 inch\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.8, page no. 810"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"Fc = 11e06 # Compressive demath.sing stress in Pa\n",
"E = 13e09 # Modulus of elasticity in Pa\n",
"\n",
"#calculation\n",
"# Part (a)\n",
"Kce = 0.3 \n",
"c = 0.8 \n",
"A = 0.12*0.16 # Area of cross section\n",
"Sl = 1.8/0.12 # Slenderness ratio\n",
"fi = (Kce*E)/(Fc*Sl**2) # ratio of stresses\n",
"Cp = ((1+fi)/(2*c)) - math.sqrt(((1+fi)/(2*c))**2-(fi/c)) # Coloumn stability factor \n",
"Pa = Fc*Cp*A\n",
"print \"The allowable axial load is\", Pa, \"N\"\n",
"\n",
"# Part (b)\n",
"P = 100000 # Allowable Axial load\n",
"Cp_ = P/(Fc*A) # Coloumn stability factor\n",
"\n",
"# Bisection method method to solve for fi\n",
"def stress(a,b,f):\n",
" N = 100\n",
" eps = 1e-5\n",
" if((f(a)*f(b))>0):\n",
" print 'no root possible f(a)*f(b)>0'\n",
" sys.exit()\n",
" if(abs(f(a))<eps):\n",
" print 'solution at a'\n",
" sys.exit()\n",
" if(abs(f(b))<eps):\n",
" print 'solution at b'\n",
" while(N>0):\n",
" c = (a+b)/2.0\n",
" if(abs(f(c))<eps):\n",
" x = c \n",
" return x\n",
" if((f(a)*f(c))<0 ):\n",
" b = c \n",
" else:\n",
" a = c \n",
" N = N-1\n",
" print 'no convergence'\n",
" sys.exit()\n",
"def p(x): \n",
" return ((1+x)/(2.0*c)) - math.sqrt(((1+x)/(2.0*c))**2-(x/c)) - Cp_ \n",
"x = stress(0.1,1.0,p) \n",
"fi_ = x\n",
"d_ = 0.12 # Diameter in m\n",
"L_max = d_*math.sqrt((Kce*E)/(fi_*Fc)) # Maximum length in m\n",
"print \"The minimum allowable length is\", round(L_max,2), \"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The allowable axial load is 173444.30361 N\n",
"The minimum allowable length is 3.02 m\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|