summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials/Chapter3.ipynb
blob: 355e0ff685896eb233a5133dc4088b65da8a9584 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3: Mechanics Properties of Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.1 Page no 94"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "offset = 0.2 #\n",
      "a_x = 0.0016 #in/in\n",
      "a_y = 50     #ksi\n",
      "\n",
      "#Calculations\n",
      "#Modulus of Elasticity\n",
      "E = a_y/(a_x*10**3) #E is the slope in GPa.\n",
      "#Yield Strength\n",
      "sigma_ys = 68       #ksi, Graphically, for a strain of 0.0016 mm/mm\n",
      "#Ultimate Stress\n",
      "sigma_u = 108       #ksi B is the peak of stress strain graph.\n",
      "#Fracture Stress\n",
      "ep_f = 0.23        #in/in\n",
      "sigma_f = 90       #ksi from the graph.\n",
      "\n",
      "#Display\n",
      "print\"The Modulus of Elasticity is   \",E,\"ksi\"\n",
      "print\"The Yield Strength from the graph \",sigma_ys,\"ksi\"\n",
      "print\"The Ultimate Stress from the graph is \",sigma_u,\"ksi\"\n",
      "print\"The Fracture Stress from the graph is \",sigma_f,\"ksi\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Modulus of Elasticity is    31.25 ksi\n",
        "The Yield Strength from the graph  68 ksi\n",
        "The Ultimate Stress from the graph is  108 ksi\n",
        "The Fracture Stress from the graph is  90 ksi\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.2 Page No 95"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "stress_b = 600          #MPa, stress\n",
      "strain_b = 0.023       #mm/mm, strain\n",
      "stress_a = 450         #Mpa, stress\n",
      "strain_a = 0.006      #mm/mm, strain\n",
      "\n",
      "#Calculations\n",
      "#Permanent Strain\n",
      "E = stress_a/strain_a\n",
      "strain_cd = stress_b/E              #The recovered elastic strain\n",
      "perm_strain = strain_b - strain_cd  #mm/mm\n",
      "\n",
      "#Modulus of Resilience\n",
      "ur_initial = (0.5*stress_a*strain_a)\n",
      "ur_final = (0.5*stress_b*strain_cd) \n",
      "\n",
      "#Display\n",
      "print\"The Permanent Strain is              =\",perm_strain,\"mm/mm\"\n",
      "print\"The Initial Modulus of Resilience is = \",ur_initial,\"MJ/mm**3\"\n",
      "print\"The Final Modulus of Resilience is   = \",ur_final,\"MJ/mm**3\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Permanent Strain is              = 0.015 mm/mm\n",
        "The Initial Modulus of Resilience is =  1.35 MJ/mm**3\n",
        "The Final Modulus of Resilience is   =  2.4 MJ/mm**3\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3 Page No 96"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Given\n",
      "p = 10000         #N, load\n",
      "E_al = 70*(10**3) #MPa,pressure\n",
      "#The given dimension are\n",
      "l_ab = 600.0     #mm\n",
      "d_ab = 20.0     #mm\n",
      "l_bc = 400.0    #mm\n",
      "d_bc = 15.0     #mm\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "a_ab = (math.pi/4.0)*(d_ab**2)     # Area of AB\n",
      "a_bc = (math.pi/4.0)*(d_bc**2)\n",
      "stress_ab = p/a_ab\n",
      "stress_bc = p/a_bc\n",
      "e_ab = stress_ab/E_al \n",
      "e_bc = 0.045                        #mm/mm . From the graph for stress_bc\n",
      "elongation = (l_ab*e_ab)+ (l_bc*e_bc)\n",
      "strain_rec = stress_bc/E_al \n",
      "e_og = e_bc-strain_rec\n",
      "rod_elong = e_og*l_bc\n",
      "\n",
      "#Display\n",
      "print\"The elongation of the rod when load is applied is\",round(elongation,1),\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The elongation of the rod when load is applied is 18.3 mm\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.4 Page No 103"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "P = 80     \t#kN load\n",
      "#Dimensions are\n",
      "l_z = 1.5\t #m\n",
      "l_y = 0.05\t#m\n",
      "l_x = 0.1 \t#m\n",
      "\n",
      "#Calculations\n",
      "Aa= l_x*l_y\n",
      "normal_stress_z = (P*(10**3))/Aa\n",
      "Est = 200 #GPa - from the tables.\n",
      "strain_z = (normal_stress_z)/(Est*(10**9)) \n",
      "axial_elong = strain_z*l_z          #elongation in the y direction\n",
      "nu_st = 0.32                        #Poisson's Ratio - from the tables.\n",
      "strain_x = -(nu_st)*(strain_z)     #strain in the x direction.\n",
      "strain_y = strain_x\n",
      "#Elongations\n",
      "delta_x = strain_x*l_x\n",
      "delta_y = strain_y*l_y\n",
      "\n",
      "#Display\n",
      "print\"The change in the length (z direction)       =\",axial_elong*10**6,\"micrometer\"\n",
      "print\"The change in the cross section (x direction)=\",delta_x*10**6,\"micrometer\"\n",
      "print\"The change in the cross section (y direction)=\",delta_y*10**6,\"micrometer\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The change in the length (z direction)       = 120.0 micrometer\n",
        "The change in the cross section (x direction)= -2.56 micrometer\n",
        "The change in the cross section (y direction)= -1.28 micrometer\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.5 Page No 105"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "#Refer to the graph of shear stress-strain of titanium alloy.\n",
      "x_A = 0.008     #rad - x co-ordinate of A\n",
      "y_A = 52\t   #MPa - y co-ordinate of A\n",
      "height = 2   \t#mm\n",
      "l = 3.0 \t\t    #mm\n",
      "b = 4.0 \t        #mm\n",
      "\n",
      "\n",
      "#Calculations\n",
      "#Shear Modulus\n",
      "G = y_A/x_A\n",
      "#Proportional Limit\n",
      "tou_pl = 52            #ksi Point A\n",
      "#Ultimate Stresss\n",
      "tou_u = 73             #ksi - Max shear stress at B\n",
      "#Maximum Elastic Displacement\n",
      "tanA= x_A               # tan theta is approximated as theta.\n",
      "d = tanA*height\n",
      "#Shear Force\n",
      "A = l*b\n",
      "V = tou_pl*A\n",
      "\n",
      "#Display\n",
      "print\"The Shear Modulus                = \",G,\"ksi\"\n",
      "print\"The Proportional Limit           = \",tou_pl,\"ksi\"\n",
      "print\"The Ultimate Shear Stress        =  \",tou_u,\"ksi\"\n",
      "print\"The Maximum Elastic Displacement = \",d,\"inch\"\n",
      "print\"The Shear Force                  =  \",V,\"kip\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Modulus                =  6500.0 ksi\n",
        "The Proportional Limit           =  52 ksi\n",
        "The Ultimate Shear Stress        =   73 ksi\n",
        "The Maximum Elastic Displacement =  0.016 inch\n",
        "The Shear Force                  =   624.0 kip\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.6 Page No 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "d_o = 0.025 \t\t#m, outside diameter\n",
      "l_o =0.25 \t\t    #m\n",
      "F =165 \t\t\t    #kN, load\n",
      "delta = 1.2 \t\t#mm\n",
      "G_al = 26 \t\t    #GPa\n",
      "sigma_y = 440 \t\t#MPa\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "#Modulus of Elasticity\n",
      "A = (math.pi/4)*(d_o**2)\n",
      "avg_normal_stress = (F*10**3)/A\n",
      "avg_normal_strain = delta/l_o\n",
      "E_al = avg_normal_stress/ avg_normal_strain\n",
      "E_al = E_al/10**6\n",
      "#Contraction of Diameter\n",
      "nu = (E_al/(2*G_al))-1\n",
      "strain_lat = nu*(avg_normal_strain) \n",
      "d_contraction = strain_lat* d_o \n",
      "\n",
      "#Display\n",
      "print\"The Modulus of Elasticity is = \",round(E_al,0),\"GPa\"\n",
      "print\"The contraction in diameter due to the force = \",round(d_contraction,4),\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "70.0281749604\n",
        "The Modulus of Elasticity is =  70.0 GPa\n",
        "The contraction in diameter due to the force =  0.0416 mm\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}