1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: Plastic Deformation of Single Crystals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 4.1, Critical Resolved Shear Stress for Slip, Page No. 125"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensile Stress applied = 14.6969 MPa\n"
]
}
],
"source": [
"from math import sqrt\n",
"import numpy as np\n",
"\n",
"#variable declaration\n",
"a=[1,-1,0];\n",
"n=[1,-1,-1];\n",
"s=[0,-1,-1];\n",
"Tr=6;\n",
"\n",
"#calculation\n",
"cos_fi=np.dot(a,n)/(sqrt(a[0]**2+a[1]**2+a[2]**2)*sqrt(n[0]**2+n[1]**2+n[2]**2));\n",
"cos_lm=np.dot(a,s)/(sqrt(a[0]**2+a[1]**2+a[2]**2)*sqrt(s[0]**2+s[1]**2+s[2]**2));\n",
"sigma=Tr/(cos_fi*cos_lm);\n",
"\n",
"#result\n",
"print('Tensile Stress applied = %g MPa')%(sigma);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|