1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#6: Dielectric Materials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.1, Page number 6.34"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"insulation resistance is 0.85 *10**18 ohm\n",
"answer varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"rho=5*10**16; #resistivity(ohm m)\n",
"l=5*10**-2; #thickness(m)\n",
"b=8*10**-2; #length(m)\n",
"w=3*10**-2; #width(m)\n",
"\n",
"#Calculation\n",
"A=b*w; #area(m**2)\n",
"Rv=rho*l/A; \n",
"X=l+b; #length(m)\n",
"Y=w; #perpendicular(m)\n",
"Rs=Rv*X/Y; \n",
"Ri=Rs*Rv/(Rs+Rv); #insulation resistance(ohm)\n",
"\n",
"#Result\n",
"print \"insulation resistance is\",round(Ri/10**18,2),\"*10**18 ohm\"\n",
"print \"answer varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.2, Page number 6.34"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DC dielectric loss is 1 *10**-3 watt\n",
"AC dielectric loss is 22.22 *10**-3 watt\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"rho=10**10; #resistivity(ohm m)\n",
"d=10**-3; #thickness(m)\n",
"A=10**4*10**-6; #area(m**2)\n",
"V=10**3; #voltage(V)\n",
"f=50; #power frequency(Hz)\n",
"epsilonr=8;\n",
"epsilon0=8.84*10**-12;\n",
"tan_delta=0.1;\n",
"\n",
"#Calculation\n",
"Rv=rho*d/A; \n",
"dl_DC=V**2/Rv; #DC dielectric loss(watt)\n",
"C=A*epsilon0*epsilonr/d;\n",
"dl_AC=V**2*2*math.pi*f*C*tan_delta; #AC dielectric loss(watt)\n",
"\n",
"#Result\n",
"print \"DC dielectric loss is\",int(dl_DC*10**3),\"*10**-3 watt\"\n",
"print \"AC dielectric loss is\",round(dl_AC*10**3,2),\"*10**-3 watt\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.3, Page number 6.35"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"polarisability of He is 0.185 *10**-40 farad m**2\n",
"relative permittivity is 1.000056\n",
"answer varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilon0=8.84*10**-12;\n",
"R=0.55*10**-10; #radius(m)\n",
"N=2.7*10**25; #number of atoms\n",
"\n",
"#Calculation\n",
"alpha_e=4*math.pi*epsilon0*R**3; #polarisability of He(farad m**2)\n",
"epsilonr=1+(N*alpha_e/epsilon0); #relative permittivity\n",
"\n",
"#Result\n",
"print \"polarisability of He is\",round(alpha_e*10**40,3),\"*10**-40 farad m**2\"\n",
"print \"relative permittivity is\",round(epsilonr,6)\n",
"print \"answer varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.4, Page number 6.35"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"field strength is 3.535 *10**7 V/m\n",
"total dipole moment is 33.4 *10**-12 Cm\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"A=360*10**-4; #area(m**2)\n",
"V=15; #voltage(V)\n",
"C=6*10**-6; #capacitance(farad)\n",
"epsilonr=8;\n",
"epsilon0=8.84*10**-12;\n",
"\n",
"#Calculation\n",
"E=V*C/(epsilon0*epsilonr*A); #field strength(V/m)\n",
"dm=epsilon0*(epsilonr-1)*V*A; #total dipole moment(Cm)\n",
"\n",
"#Result\n",
"print \"field strength is\",round(E/10**7,3),\"*10**7 V/m\"\n",
"print \"total dipole moment is\",round(dm*10**12,1),\"*10**-12 Cm\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.5, Page number 6.36"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"capacitance is 226.3 *10**-12 farad\n",
"parallel loss resistance is 10 mega ohm\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"d=0.08*10**-3; #thickness(m)\n",
"A=8*10**-4; #area(m**2)\n",
"epsilonr=2.56;\n",
"epsilon0=8.84*10**-12;\n",
"tan_delta=0.7*10**-4;\n",
"new=10**6; #frequency(Hz)\n",
"\n",
"#Calculation\n",
"C=A*epsilon0*epsilonr/d; #capacitance(farad)\n",
"epsilonrdash=tan_delta*epsilonr;\n",
"omega=2*math.pi*new;\n",
"R=d/(epsilon0*epsilonrdash*omega*A); #parallel loss resistance(ohm)\n",
"\n",
"#Result\n",
"print \"capacitance is\",round(C*10**12,1),\"*10**-12 farad\"\n",
"print \"parallel loss resistance is\",int(R/10**6),\"mega ohm\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.6, Page number 6.36"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the complex polarizability is (3.50379335033-0.0600074383321j) *10**-40 F-m**2\n",
"answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex cant be converted to float\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilonr=4.36; #dielectric constant\n",
"t=2.8*10**-2; #loss tangent(t)\n",
"N=4*10**28; #number of electrons\n",
"epsilon0=8.84*10**-12; \n",
"\n",
"#Calculation\n",
"epsilon_r = epsilonr*t;\n",
"epsilonstar = (complex(epsilonr,-epsilon_r));\n",
"alphastar = (epsilonstar-1)/(epsilonstar+2);\n",
"alpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n",
"\n",
"#Result\n",
"print \"the complex polarizability is\",alpha_star*10**40,\"*10**-40 F-m**2\"\n",
"print \"answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex cant be converted to float\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|