summaryrefslogtreecommitdiff
path: root/Materials_Science_and_Engineering/Chapter9.ipynb
blob: 3c213c6973e182283487ad660898a76e1c5e16a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 09 : Phase Transformations"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1, Page No 206"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "del_t1 = 0\t\t# temperature difference in degree Celsius\n",
      "del_t2 = -5     # temperature difference in degree Celsius\n",
      "del_t3 = -40    # temperature difference in degree Celsius\n",
      "del_h = 6.02    # enthalpy of fusion in kJ/mol\n",
      "T_m = 273.0     # mean temperature\n",
      "Gamma = 0.076   # energy of ice water interface in J /m^2\n",
      "v = 19.0        # molar volume of ice\n",
      "\n",
      "#Calculations\n",
      "print(\" Part A\")\n",
      "print(\" At del_t = %d, there is no supercooling. So there is no critical radius\" %del_t1)\n",
      "print(\" Part B\")\n",
      "del_f = 16.0/3*math.pi*(Gamma)**3*T_m**2/((del_h*1e3*1e6/v)**2*del_t2**2)\n",
      "r = 2*T_m*Gamma/(-del_h*1e3*1e6/v*del_t2)\n",
      "print(\" Critical free energy of nucleation is %.1eJ\" %del_f)\n",
      "print(\" Critical radius is %d angstrom\" %math.ceil(r*1e10))\n",
      "print(\" Part C\")\n",
      "temp_r = del_t3/del_t2\n",
      "del_f_ = del_f/temp_r**2\n",
      "r_ = r/temp_r\n",
      "\n",
      "#Results\n",
      "print(\" Critical free energy of nucleation is %.1eJ\" %del_f_)\n",
      "print(\" Critical radius is %d angstrom.\"   %math.ceil(r_*1e10))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Part A\n",
        " At del_t = 0, there is no supercooling. So there is no critical radius\n",
        " Part B\n",
        " Critical free energy of nucleation is 2.2e-16J\n",
        " Critical radius is 262 angstrom\n",
        " Part C\n",
        " Critical free energy of nucleation is 3.4e-18J\n",
        " Critical radius is 33 angstrom.\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2, Page No 208"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "T= 300.0     # temperature in kelvin\n",
      "R = 8.314    # universal gas constant\n",
      "k = 2.303    # conversion factor\n",
      "a1 = 1e42\n",
      "a2 = 1e6 \t # nucleation rate\n",
      "a3 = 1e10    # nucleation rate\n",
      "\n",
      "#Calculations\n",
      "I1 = (math.log(a1,10)-math.log(a2,10))*k*R*T      #exponent factor\n",
      "I2 = (math.log(a1)-math.log(a3))*k*R*T            # exponent factor\n",
      "del_f = I1-I2                                     # difference \n",
      "a = 10**(math.log(a3,10)-math.log(a2,10))\n",
      "\n",
      "#Results\n",
      "print(\"A change of %d KJ mol^-1 energy is required to increase nucleation factor from \\n  %.0e m^-3 s^-1  to  %.0e m^-3 s^-1 \" %(math.ceil(del_f/1e3),a,a3))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "A change of -216 KJ mol^-1 energy is required to increase nucleation factor from \n",
        "  1e+04 m^-3 s^-1  to  1e+10 m^-3 s^-1 \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4, Page No 211"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "Gamma_alpha_del = 0.5    # in J m^-2\n",
      "Gamma_alpha_beta = 0.5   # in J m^-2\n",
      "Gamma_beta_del = 0.01    # in J m^-2\n",
      "\n",
      "#Calculations\n",
      "theta = math.acos((Gamma_alpha_del -Gamma_beta_del)/Gamma_alpha_beta)\n",
      "del_f_ratio = 1.0/4*(2-3*math.cos(theta)+(math.cos(theta))**3)\n",
      "\n",
      "#Results\n",
      "print(\"del_f_het is %0.4f th fraction of  del_f_homo.\" %del_f_ratio)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "del_f_het is 0.0003 th fraction of  del_f_homo.\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6 Page No 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "mu = 45.5e9\n",
      "b = 2.55e-10\n",
      "n1 = 1e9 \t\t# initial dislocation density\n",
      "n2 = 1e13       # final dislocation density\n",
      "\n",
      "#Calculations\n",
      "\n",
      "E = 1.0/2*mu*b**2*n2\n",
      "del_g = E       # as difference between initial and final dislocation energy is four order magnitude\n",
      "\n",
      "#Results\n",
      "print(\"Free energy change during recrystallization is %d J m^-3\" %-del_g)\n",
      "\n",
      "#Numerical value of answer in book is 14800\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Free energy change during recrystallization is -14793 J m^-3\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}