1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 06 : Crystal Interfections"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.1, Page No 125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"t1 = 0 #temperature in kelvin\n",
"t2 = 300.0 #temperature in kelvin\n",
"t3 = 900.0 #temperature in kelvin\n",
"R = 8.314 #universal gas constant\n",
"del_hf_al = 68.0 #Enthalpy of formation of aluminium crystal in KJ\n",
"del_hf_ni = 168.0 #Enthalpy of formation of nickel crystal in KJ\n",
"print(\" Example 6.1\")\n",
"\n",
"#Calculations\n",
"print(\"Equilibrium concentration of vacancies of aluminium at %.2f K is 0\" %t1)\n",
"n_N = math.exp(-del_hf_al*1e3/(R*t2))\n",
"print(\" Equilibrium concentration of vacancies of aluminium at %.2f K \" %t2) # answer in book is 1.45e-12\n",
"print(\"is %.2e\" %(n_N))\n",
"n_N = math.exp(-del_hf_al*1e3/(R*t3))\n",
"print(\" Equilibrium concentration of vacancies of aluminium at %.2f K \" %t3) # answer in book is 1.12e-4\n",
"print(\"is %.2e \" %(n_N))\n",
"\n",
"#Results\n",
"print(\"Equilibrium concentration of vacancies of Nickel at %.2f K is 0\" %t1)\n",
"n_N = math.exp(-del_hf_ni*1e3/(R*t2))\n",
"print(\" Equilibrium concentration of vacancies of Nickel at %.2fK \" %t2) # answer in book is 1.45e-12\n",
"print(\"is %.2e\" %(n_N))\n",
"n_N = math.exp(-del_hf_ni*1e3/(R*t3))\n",
"print(\" Equilibrium concentration of vacancies of Nickel at %.2f K \" %t3) # answer in book is 1.78e-10\n",
"print(\"is %.2e \" %(n_N))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Example 6.1\n",
"Equilibrium concentration of vacancies of aluminium at 0.00 K is 0\n",
" Equilibrium concentration of vacancies of aluminium at 300.00 K \n",
"is 1.44e-12\n",
" Equilibrium concentration of vacancies of aluminium at 900.00 K \n",
"is 1.13e-04 \n",
"Equilibrium concentration of vacancies of Nickel at 0.00 K is 0\n",
" Equilibrium concentration of vacancies of Nickel at 300.00K \n",
"is 5.59e-30\n",
" Equilibrium concentration of vacancies of Nickel at 900.00 K \n",
"is 1.77e-10 \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.2, Page No 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"a = 2.87 #lattice parameter in angstrom\n",
"b= 2.49 #magnitude of burgers vector in angstrom\n",
"G = 80.2 #shear modulus in GN\n",
"\n",
"#Calculations\n",
"E = G*1e9*(b*1e-10)**2*1.0/2 \n",
"\n",
"#Results\n",
"print(\"Line energy of dislocation is %.2e J m^-1\" %E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Line energy of dislocation is 2.49e-09 J m^-1\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4, Page No 136"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"a = 1.0e10 # total number of edge dislocation \n",
"N = 6.023e23 \t# Avogadro number\n",
"R = 8.314 \t# Universal gas constant\n",
"t1 = 0 \t# initial temperature in K\n",
"t2 = 1000.0\t # Final temperature in K\n",
"del_hf = 100.0 \t # Enthalpy of vacancy formation in KJ\n",
"d = 2.0 # length of one step in angstrom\n",
"\n",
"#Calculations\n",
"v = 5.5/10**6 # volume of one mole crystal\n",
"n = N*math.exp(-(del_hf*1e03)/(R*(t2-t1)))/v\n",
"k = 1.0/(d*1e-10 ) # atoms required for 1 m climb\n",
"b = n/(k*a)# average amount of climb\n",
"c = b*d*1e-10 \n",
"\n",
"#Results\n",
"print(\"Average down climb of crystal is %.2e m\" %c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average down climb of crystal is 2.62e-06 m\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5 Page No 137"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"\n",
"E = 56.4 #bond energy in KJ\n",
"N_a = 6.023e23 #Avogadro\u2019s number\n",
"n = 12.0 #number of bonds\n",
"m = 3.0 #number of broken bonds \n",
"N = 1.77e19 #number of atoms in copper crystal of type {111} per m^2\n",
"\n",
"#Calculations\n",
"b_e = 1.0/2*E*1e3*n/N_a #bond energy per atom\n",
"e_b = b_e*m/n #energy of broken bond at surface\n",
"s_e = e_b*N #surface enthalpy of copper\n",
"\n",
"#Results\n",
"print(\"Surface enthalpy of copper is %0.2f J m^-2\" %s_e)\n",
"print(\"Surface enthalpy of copper is %0.2f erg cm^-2\" %(s_e*1e3))\n",
"# Answer in book is 2490 erg cm^-2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Surface enthalpy of copper is 2.49 J m^-2\n",
"Surface enthalpy of copper is 2486.17 erg cm^-2\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6, Page No 141"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Gamma_gb = 1.0 #let, energy of grain boundary\n",
"\n",
"#Calculations\n",
"Gamma_s = 3.0*Gamma_gb #energy of free surface\n",
"theta = 2*math.degrees(math.acos(1.0/2*Gamma_gb/Gamma_s))\n",
"\n",
"#Results\n",
"print(\"Angle at the bottom of groove of a boundary is %0.2f degrees.\" %math.ceil(theta))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Angle at the bottom of groove of a boundary is 161.00 degrees.\n"
]
}
],
"prompt_number": 28
}
],
"metadata": {}
}
]
}
|