1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 04 : Atomic Structure and Chemical Bonding"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.1, Page No 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"\n",
"E = 1.64e-18 # energy difference between two states in J\n",
"h= 6.626e-34 # planks constant\n",
"c = 2.998e8 # speed of light in m/s\n",
"\n",
"#Calculations\n",
"nu = E/h\n",
"lambda1 = c/nu\n",
"\n",
"#Results\n",
"print(\"Frequency of emitted radiation is %.2e Hz\" %nu)\n",
"print(\"Wavelength of emitted radiation is %.2e m\" %lambda1) # answer in book is 1210 angstrom\n",
"print(\" %d angstrom \" %(lambda1*1e10))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of emitted radiation is 2.48e+15 Hz\n",
"Wavelength of emitted radiation is 1.21e-07 m\n",
" 1211 angstrom \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.3, Page No 70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"e_a = 713.0 # enthalpy of atomization in kJ/mol\n",
"e_b = 347.0 # bond energy in kJ/mol\n",
"a = 4.0 # total number of atoms in single crystal structure\n",
"b = 2 # number of atoms in a bond\n",
"\n",
"#Calculations\n",
"k = a/b \t\t# effective number of bond per atom\n",
"e = k*e_b\n",
"\n",
"#Results\n",
"print(\"%d kJ should be the enthalpy of atomization of diamond\" %e)\n",
"print(\"However, %d kJ is very close to \" %e)\n",
"print(\"%d kJ\" %e_a)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"694 kJ should be the enthalpy of atomization of diamond\n",
"However, 694 kJ is very close to \n",
"713 kJ\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.4, Page No 73"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"del_h = 6.02 # enthalpy of fusion in kJ/mol\n",
"n = 2.0 # number of hydrogen atom in 1 water atom\n",
"del_b = 20.5 # hydrogen bond energy in kJ/mol\n",
"\n",
"#Calculations\n",
"f = del_h/(n*del_b)\n",
"\n",
"#Results\n",
"print(\"Fraction of hydrogen bonds which broken is %.2f\" %f)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fraction of hydrogen bonds which broken is 0.15\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|