summaryrefslogtreecommitdiff
path: root/Materials_Science_and_Engineering/Chapter12.ipynb
blob: a9e44765d26842614d7700384f1f6306adb641e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12 : Fracture"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.1, Page No 302"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "c = 2.0 \t# crack of half length in micro meter\n",
      "Y = 70.0 \t# young\u2019s modulus in GN m^-2\n",
      "Gamma = 1.0\t # specific surface energy \n",
      "\n",
      "#Calculations\n",
      "sigma_f = math.sqrt(2*Gamma*Y*1e9/(math.pi*c*1e-6))/1e6\n",
      "r = Y*1e3/sigma_f\n",
      "\n",
      "#Results\n",
      "print(\" Fracture strength of %d MN m^-2 is 1/%d th of young\u2019s modulus. \"%(math.ceil(sigma_f),math.ceil(r/100.0)*100.0))\n",
      "print(\" Thus Griffiths criterion bridges the gap between the  observed and ideal strengths of brittle material\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Fracture strength of 150 MN m^-2 is 1/500 th of young\u2019s modulus. \n",
        " Thus Griffiths criterion bridges the gap between the  observed and ideal strengths of brittle material\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.2, Page No 304"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "Gamma = 1.5\t\t# specific surface energy in J/m^2\n",
      "Y = 200.0\t \t# Young\u2019s modulus in GN/m^2\n",
      "c = 2.0\t\t    # half length of crack\n",
      "\n",
      "#Calculations\n",
      "sigma_f = math.sqrt(2*Gamma*Y*1e9/(math.pi*c*1e-6))\n",
      "\n",
      "#Results\n",
      "print(\" Brittle fracture strength at low temperatures is %d MNm^-2 \" %(sigma_f/1e6))# answer in book is 310MNm^-2\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Brittle fracture strength at low temperatures is 309 MNm^-2 \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.3, Page No 306"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "Gamma = 2.0\t\t # specific surface energy in J/m**2\n",
      "Y = 350.0\t\t # Young\u2019s modulus in GN/m**2\n",
      "c = 2.0\t\t\t # half length of crack\n",
      "de_dt1 = 1e-2 \t\t# strain rate\n",
      "de_dt2 = 1e-5 \t# strain rate\n",
      "\n",
      "#Calculations\n",
      "print(\" Part A:\")\n",
      "sigma_f = math.sqrt(2*Gamma*Y*1e9/(math.pi*c*1e-6))\n",
      "sigma_y = sigma_f/1e6\n",
      "T = 173600/(sigma_y-20.6-61.3*math.log(de_dt1,10))\t# temperature calculation\n",
      "\n",
      "print(\" Transition temperature for strain rate %.0e s**-1 is %d K\" %(de_dt1,T))   # answer in book is 300 K\n",
      "print(\" Part B:\")\n",
      "\n",
      "T = 173600/(sigma_y-20.6-61.3*math.log(de_dt2,10))\t# temperature calculation\n",
      "\n",
      "\n",
      "#Results\n",
      "print(\" Transition temperature for strain rate %.0e s**-1 is %d K\" %(de_dt2,T))   # answer in book is 230 K\n",
      "# Solution in book for two parts is divided into three parts\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Part A:\n",
        " Transition temperature for strain rate 1e-02 s**-1 is 302 K\n",
        " Part B:\n",
        " Transition temperature for strain rate 1e-05 s**-1 is 229 K\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}