1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Plastic Deformation and Creep in Crystalline Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2, Page No 272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"b = 2.0 \t\t# burger vector in angstrom\n",
"v = 20*b**3 \t# activation volume \n",
"tau_pn = 1000.0 # P-N stress of crystal in MNm**-2\n",
"k = 1.38e-23 \t# physical constant\n",
"t1 = 0 \t\t\t# temperature in K\n",
"t2 = 100.0\t\t# temperature in K \n",
"t3 = 300.0\t\t# temperature in K\n",
"t4 = 500.0\t\t# temperature in K\n",
"T = t1\t\n",
"\n",
"#Calculations\n",
"tau_app = tau_pn - 40.0*k*T/(v*1e-30)\n",
"print(\"The stress required to move the dislocation at temperature %dK is %d MNm**-2\" %(T,tau_app))\n",
"print(\"Part B:\")\n",
"T = t2\n",
"tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n",
"print(\"The stress required to move the dislocation at temperature %dK is %d MNm**-2\" %(T,tau_app))\n",
"print(\"Part C:\")\n",
"T = t3\n",
"tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n",
"if tau_app<0 :\n",
" print(\" Stress to be applied is zero\")\n",
" print(\"The stress required to move the dislocation at temperature %dK entirely overcome by thermal fluctuations\" %T)\n",
"\n",
"print(\"Part D:\")\n",
"T = t4\n",
"tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n",
"\n",
"#Results\n",
"if tau_app<0 :\n",
" print(\"Stress to be applied is zero\")\n",
" print(\"The stress required to move the dislocation at temperature %dK entirely overcome by thermal fluctuations\" %T)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The stress required to move the dislocation at temperature 0K is 1000 MNm**-2\n",
"Part B:\n",
"The stress required to move the dislocation at temperature 100K is 655 MNm**-2\n",
"Part C:\n",
" Stress to be applied is zero\n",
"The stress required to move the dislocation at temperature 300K entirely overcome by thermal fluctuations\n",
"Part D:\n",
"Stress to be applied is zero\n",
"The stress required to move the dislocation at temperature 500K entirely overcome by thermal fluctuations\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3, Page No 278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"mu = 44.0 # shear modulus of copper in GN m^-2\n",
"b = 2.55 # burgers vector in angstrom\n",
"tau = 35.0 # shear stress in MN m^-2\n",
"\n",
"#Calculations\n",
"l = mu*1e9*b*1e-10/(tau*1e6)\n",
"rho = 1/l**2\n",
"\n",
"#Results\n",
"print(\"Dislocation density in copper is %.1e m^-2\" %rho)\n",
"# Answer in book is 1e12 m^-2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dislocation density in copper is 9.7e+12 m^-2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4, Page No 280"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"sigma1 = 120.0 # initial yield strength of material in MNm**-2\n",
"sigma2 = 220.0 # Final yield strength of material in MN m**-2\n",
"d1 = 0.04 # initial diameter in mm\n",
"d2 = 0.01 # final diameter in mm\n",
"n = 9.0 # astm number\n",
"\n",
"#Calculations\n",
"print(\"Example 11.4\")\n",
"k = (sigma2-sigma1)*1e6/(1/math.sqrt(d2*1e-3)-1/math.sqrt(d1*1e-3))\n",
"sigma_i = sigma1*1e6 -k/math.sqrt((d1*1e-3))\n",
"d = 1/math.sqrt(2**(n-1)*1e4/645)\n",
"sigma_y = sigma_i+k*(d*1e-3)**(-0.5)\n",
"\n",
"#Results\n",
"print(\"Yield stress for a grain size of ASTM 9 is %d MN m**-2\" %math.ceil(sigma_y/1e6))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.4\n",
"Yield stress for a grain size of ASTM 9 is 179 MN m**-2\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 Page No 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"n1 = 1e6 # initial number of particles\n",
"n2 = 1e3 # final number of particle\n",
"\n",
"#Calculations\n",
"k = (n1/n2)**(1.0/3)\n",
"\n",
"#Results\n",
"print(\"Yield strength would have decreased to %d percent of its initial value.\" %(100.0/k))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Yield strength would have decreased to 10 of its initial value.\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|