summaryrefslogtreecommitdiff
path: root/Materials_Science/Chapter09.ipynb
blob: f9450a23550e2e231fdc1ea9e85a164c9922a3dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{

 "metadata": {

  "name": "",

  "signature": "sha256:8681b8cb87a35e316321fbab8aecdb38b5b347586e7dea8acd0d04d98e829c88"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter09:Fracture of Metals"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.1:pg-200"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 9.1 : difference\n",

      "import math \n",

      "#given data :\n",

      "E=200*10**9; # in N/m**2\n",

      "C=(4*10**-6)/2;# in m\n",

      "gama=1.48; # in J/m**2\n",

      "sigma=math.sqrt((2*E*gama)/(math.pi*C));\n",

      "print round(sigma*10**-6),\"= fracture strength,sigma(MN/m**2) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "307.0 = fracture strength,sigma(MN/m**2) \n"

       ]

      }

     ],

     "prompt_number": 2

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.2:pg-200"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 9.2 : the fracture strength and compare\n",

      " \n",

      "import math\n",

      "#given data :\n",

      "E=70*10**9; # in N/m**2\n",

      "C=(4.2*10**-6)/2;# in m\n",

      "gama=1.1; # in J/m**2\n",

      "sigma=math.sqrt((2*E*gama)/(math.pi*C));\n",

      "print sigma,\"= fracture strength,sigma(N/m**2)  \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "152783261.475 = fracture strength,sigma(N/m**2)  \n"

       ]

      }

     ],

     "prompt_number": 3

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.3:pg-200"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 9.3 : maximum length of surface\n",

      "import math\n",

      "\n",

      "#given data :\n",

      "sigma=36;#in MN/m**2\n",

      "gama=0.27;# in J/m**2\n",

      "E=70*10**9;#in N/m**2\n",

      "C=((2*E*gama)/(sigma**2*math.pi))*10**-6;\n",

      "C2=2*C;\n",

      "print round(C2,3),\"= maximum length of surface flow,C2(micro-m)   \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "18.568 = maximum length of surface flow,C2(micro-m)   \n"

       ]

      }

     ],

     "prompt_number": 5

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.4a:pg-203"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 9.4.a: Temperature\n",

      " \n",

      "import math\n",

      "E=350;# in GN/m**2\n",

      "Y=2;# in J/m**2\n",

      "C=2;# in micro meter\n",

      "sg=math.sqrt((2*E*10**9*Y)/(math.pi*C*10**-6));# IN mn/M**2\n",

      "e=10**-2;# per second\n",

      "T=173600/(round(sg*10**-6)-20.6-61.3*(math.log10(e)));# in kelvin\n",

      "print round(T,1),\"= temperature in kelvin for ductile to brittle transition at a strain rate of 10**-2 per second\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "302.4 = temperature in kelvin for ductile to brittle transition at a strain rate of 10**-2 per second\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.4b:pg-203"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 9.4.b: Temperature\n",

      "import math\n",

      "\n",

      "E=350;# in GN/m**2\n",

      "Y=2;# in J/m**2\n",

      "C=2;# in micro meter\n",

      "sg=math.sqrt((2*E*10**9*Y)/(math.pi*C*10**-6));# IN mn/M**2\n",

      "e=10**-5;# per second\n",

      "T=173600/(round(sg*10**-6)-20.6-61.3*(math.log10(e)));# in kelvin\n",

      "print round(T),\"= temperature in kelvin for ductile to brittle transition at a strain rate of 10**-5 per second\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "229.0 = temperature in kelvin for ductile to brittle transition at a strain rate of 10**-5 per second\n"

       ]

      }

     ],

     "prompt_number": 10

    }

   ],

   "metadata": {}

  }

 ]

}