1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
{
"metadata": {
"name": "",
"signature": "sha256:dd88e5202fe8cb4f62cee212896e4620a6a485517d90fb3c0293ab4baa871eef"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter02: Structure of atoms"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.1:pg-12"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.1 : radius of the first bohr\"s orbit \n",
" \n",
"#given data :\n",
"\n",
"ep=8.854*10**-12;#\n",
"h=6.626*10**-34;#\n",
"m=9.1*10**-31;#in Kg\n",
"e=1.602*10**-19;#\n",
"r1=((ep*(h**2))/((math.pi*m*(e**2))));#\n",
"print round(r1*10**10,2),\"is radius,r1(in angstrom) \"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.53 is radius,r1(in angstrom) \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.2:pg-12"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Example 2.2 : radius of the second bohr\"s orbit \n",
" \n",
"#given data :\n",
"\n",
"r1_h=0.529; # radius for hydrozen atom in Angstrum\n",
"n1=1;# for the first bohr's orbit of electron in hydrozen atom\n",
"Z1=1; # for the first bohr's orbit of electron in hydrozen atom\n",
"k=(r1_h*Z1)/n1**2; # where k is constant\n",
"n2=2; # for the second bohr orbit\n",
"Z2=2; #for the second bohr orbit\n",
"r2_he=k*(n2**2/Z2);\n",
"print r2_he,\" is radius of the second bohr orbit,r2 in (Angstrom) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.058 is radius of the second bohr orbit,r2 in (Angstrom) \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.3:pg-13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Example 2.3: to prove\n",
" \n",
"Z=1;#assume\n",
"n1=1;#orbit 1\n",
"n2=2;#orbit 2\n",
"n3=3;#orbit 3\n",
"e1=((-13.6*Z)/(n1**2));#energy for the first orbit\n",
"e2=((-13.6*Z)/(n2**2));#energy for the second orbit\n",
"e3=((-13.6*Z)/(n3**2));#energy for the third orbit\n",
"e31=e3-e1;#energy emitted by an electron jumping from orbit nuber 3 to orbit nimber 1\n",
"e21=e2-e1;#energy emitted by an electron jumping from orbit nuber 2 to orbit nimber 1\n",
"re=e31/e21;#ratio of energy\n",
"print re,\" is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \\n hence proved\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.18518518519 is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \n",
" hence proved\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.4:pg-13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.4 : velocity\n",
" \n",
"#given data :\n",
"\n",
"h=6.626*10**-34;\n",
"e=1.6*10**-19;\n",
"epsilon_o=8.825*10**-12;\n",
"n=1;\n",
"Z=1;\n",
"vn=(Z*e**2)/(2*epsilon_o*n*h);\n",
"print vn,\" is velocity,vn in (m/s) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"2188990.2342 is velocity,vn in (m/s) \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.5:pg-14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.5 : velocity\n",
" \n",
"#given data :\n",
"n=1;\n",
"Z=1;\n",
"k=6.56*10**15; # k is constant\n",
"fn=k*(Z**2/n**3);\n",
"print fn,\" is orbital frequency,fn in (Hz) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"6.56e+15 is orbital frequency,fn in (Hz) \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.6.a:pg-14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.6.a : the energy of the photon emitted\n",
" \n",
"#given data :\n",
"Z=1;#for hydrozen\n",
"n1=3;\n",
"n2=2;\n",
"E3=-(13.6*Z**2)/n1**2;\n",
"E2=-(13.6*Z**2)/n2**2;\n",
"del_E=E3-E2;\n",
"print round(del_E,2),\" is the energy of photon emitted, del_E in (eV) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.89 is the energy of photon emitted, del_E in (eV) \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.6.b:pg-14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.6.b : frequency\n",
" \n",
"#given data :\n",
"\n",
"Z=1;#for hydrozen\n",
"n1=3;\n",
"n2=2;\n",
"m=6.626*10**-34;# mass of electron in kg\n",
"E3=-(13.6*Z**2)/n1**2;\n",
"E2=-(13.6*Z**2)/n2**2;\n",
"del_E=E3-E2;\n",
"E=del_E*1.6*10**-19;# in joules\n",
"v=(E/m);\n",
"print round(v,2),\"frequency of the photon emitted,v(Hz) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"4.5611563873e+14 frequency of the photon emitted,v(Hz) \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.6.c:pg-15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 2.6.c : wave length of the photon emitted\n",
" \n",
"#given data :\n",
"\n",
"Z=1;#for hydrozen\n",
"n1=3;\n",
"n2=2;\n",
"m=6.626*10**-34;# mass of electron in kg\n",
"C=3*10**8;\n",
"E3=-(13.6*Z**2)/n1**2;\n",
"E2=-(13.6*Z**2)/n2**2;\n",
"del_E=E3-E2;\n",
"E=del_E*1.6*10**-19;\n",
"v=E/m;\n",
"lamda=C/v;\n",
"print round(lamda,9),\" is wavelength of the photon emitted,(m) \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"6.58e-07 is wavelength of the photon emitted,(m) \n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|