1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
{
"metadata": {
"name": "",
"signature": "sha256:87280833dc2d67e192335bfc1124aebe8f8ba8cde8ddbc9caf92eb09f60263d6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ch-8, Phase & Phase diagrams"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.1 page no-227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#given\n",
"#according to reduced phase rule, we have\n",
"#D=C-P+2\n",
"C=2 # for two component system\n",
"P=1\n",
"for P in range (1,6):\n",
" print \"P =\",P,' ',\n",
" #no of variables\n",
" V=P*(C-1)+2\n",
" #degrees of freedom\n",
" D=C-P+2\n",
" print \"D =\",D\n",
"\n",
"print \"we can see that for P=5 we have D=-1 i.e non existent so,two components cannot have more than 4 phases in equilibrium\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"P = 1 D = 3\n",
"P = 2 D = 2\n",
"P = 3 D = 1\n",
"P = 4 D = 0\n",
"P = 5 D = -1\n",
"we can see that for P=5 we have D=-1 i.e non existent so,two components cannot have more than 4 phases in equilibrium\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.2 page no-235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#given\n",
"#density of alpha and beta phases\n",
"rhoalpha=10300 #kg/m**3\n",
"rhobeta=7300 #kg/m**3\n",
"#refer to fig-8.5 in book\n",
"#at point B, the composition of lead in alpha-phase is 82% and that of tin in alpha-phase is 18%\n",
"leadalpha=82\n",
"tinalpha=18\n",
"#so we get\n",
"#82/rholead+18/rhotin=100/rhoalpha -----------(1)\n",
"#similarly at point E\n",
"#the composition of tin and lead resp are 97% and 3%\n",
"leadbeta=3\n",
"tinbeta=97\n",
"#so we get\n",
"#3/rholead+97/rhotin=100/rhobeta ------(2)\n",
"#solving 1 and 2\n",
"#we get\n",
"rholead=11364.1 #kg/m**3\n",
"rhotin=7220.14 #kg/m**3\n",
"#let density of eutectic composition is rhoe. knowing the compositions at point D, we can write\n",
"#38/rholead+62/rhotin=100/rhoe\n",
"#so \n",
"rhoe=100/(38/rholead+62/rhotin) #kg/m**3\n",
"#it is given that there is 88% eutectic composition by volume. its conversion in weight proportions yeild\n",
"W=88/100*rhoe #kgf\n",
"Wlead=38/100*W #Kgf\n",
"Wtin=62/100*W #kgf\n",
"#there is 12% beta phase by volume which on converion to weight proportion gives\n",
"Wdash=12/100*rhobeta #Kgf\n",
"Wdashlead=3/100*Wdash #kgf\n",
"Wdashtin=97/100*Wdash #kgf\n",
"#total weight of lead and tin can be estimated now as\n",
"Wddashlead=Wlead+Wdashlead #kgf\n",
"Wddashtin=Wtin+Wdashtin #kgf\n",
"#percentafe of tin\n",
"percenttin=Wddashtin/(Wddashtin+Wddashlead)*100 \n",
"print \"percentace of tin is %0.2f\"%(percenttin)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"percentace of tin is 65.72\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.4 page no-242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#melting point of A and B\n",
"MptA=1250 #degrees celcius\n",
"MptB=1900 #degrees celcius\n",
"#part(a)\n",
"#according to the conditions given in question phase diagram can be drawn as shown in fig 8.10 given in book\n",
"#part(b)\n",
"#at 1250 degrees celcius , it is a peritectic solution\n",
"#equation representing the equilibrium is given in the book which denotes forward reaction as cooling and backward as heating\n",
"#part (c)\n",
"#we are just considering a tie line just above the peritectic line at temp 1251 degrees celcius\n",
"#at this point\n",
"Cs1=80\n",
"Cl1=30 \n",
"C01=75\n",
"#point below peritectic line has temp as 1249 degrees celcius\n",
"Cs2=80\n",
"Cl2=50 \n",
"C02=75\n",
"#weight fraction of the phase present in the material of overall composition 75% B at 1251 degrees celcius and 75% B at 1249 degrees \n",
"f_alpha1=(Cs1-C01)/(Cs1-Cl1)*100 #%\n",
"f_beta1=(C01-Cl1)/(Cs1-Cl1)*100 #%\n",
"f_alpha2=(Cs2-C02)/(Cs2-Cl2)*100 #%\n",
"f_beta2=(C02-Cl2)/(Cs2-Cl2)*100 #%\n",
"#part (d)\n",
"# 75% B at room temp\n",
"Cs3=90\n",
"Cl3=30 \n",
"C03=75\n",
"f_alpha3=(Cs3-C03)/(Cs3-Cl3)*100 #%\n",
"f_beta3=(C03-Cl3)/(Cs3-Cl3)*100 #%\n",
"#the microstructure is also shown in book at page no 243\n",
"print \"weight fraction of the phase present in the material of overall composition 75 percent B at 1251 degrees celcius and 75percent B at 1249 degrees are %d, %d, %0.2f, %0.2f and at 75 percent concentration of B at room temp is %d, %d\"%(f_alpha1,f_beta1,f_alpha2,f_beta2,f_alpha3,f_beta3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"weight fraction of the phase present in the material of overall composition 75 percent B at 1251 degrees celcius and 75percent B at 1249 degrees are 10, 90, 16.67, 83.33 and at 75 percent concentration of B at room temp is 25, 75\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.5 page no-246"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#according to the given conditions in the ques the graph can be drawn as shown in fig 8.12\n",
"#the given temp 576.9 degees celcius is just below the eutectic temp 577 degres celcius\n",
"#from the graph, we can have the following values\n",
"C_beta_e=100\n",
"C_e=1.65\n",
"C_0=10\n",
"#hence weight fraction is given by\n",
"W_alpha=(C_beta_e-C_0)/(C_beta_e-C_e)\n",
"print \"the weight fraction of alpha in an alloy containing 10percent Si at 576.9 degrees celcius is %0.3f \"%(W_alpha)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the weight fraction of alpha in an alloy containing 10percent Si at 576.9 degrees celcius is 0.915 \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.6 page no-247"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#weight percent of tin and lead are\n",
"W1=90\n",
"W2=10\n",
"#let the amount of tin that can be added to the crucible without changing the system's solidificarion is \"m\" \n",
"#eutectic arm extends to 97% tin\n",
"#therefore, with the addition of \"m\" gram of tin, the composition of alloy should not exceed 97% tin\n",
"#therefore\n",
"#(900+m)/(1000+m)=97/100\n",
"#so\n",
"m=(97/100*1000-900)/(1-97/100)/1000 #kg because 1kg=1000g\n",
"print \"maximum %0.2f kg of tin can be added without changing the systems temperature\"%(m)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum 2.33 kg of tin can be added without changing the systems temperature\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-8.7 page no-250"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#the eutectoidal mixture of pearlite consists of two phases viz. alpha (ferrite) and Fe3C (cementite). the eutectoid composition contains 0.83% carbon. the lever rule is applied in which the lever arm has ferrite (=0% carbon) at one end and cementite (6.67% carbon) at the other end. the fulcrum is taken at 0.83% carbon. hence by applying lever rule, we get\n",
"Walpha=(6.67-0.83)/(6.67-0.00)\n",
"WFe3C=(0.83-0.0)/(6.67-0.0)\n",
"print \"the weight fractions of ferrite and cementite are %0.3f and %0.3f resp\"%(Walpha,WFe3C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the weight fractions of ferrite and cementite are 0.876 and 0.124 resp\n"
]
}
],
"prompt_number": 20
}
],
"metadata": {}
}
]
}
|