1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
{
"metadata": {
"name": "",
"signature": "sha256:9b85f177bb11398b4f5d182de9fe8e9e406f1c070a747a1b0c1a3320e4f20360"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ch-22, Superconduting material properties, behaviour and application"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.2 page no-660"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#given\n",
"#critical temp of Pb\n",
"T0=7.17 #K\n",
"#critical field\n",
"H0=0.0803 #A/m\n",
"#to find the critical field at \n",
"T1=3 #K\n",
"T2=10 #K\n",
"#critical field at T1\n",
"Hc1=H0*(1-T1**2/T0**2) #A/m\n",
"#critical field at T2\n",
"Hc2=H0*(1-T2**2/T0**2) #A/m\n",
"print \" the critical field at 3K temp is %0.3f A/m and at 10K ia %0.3f A/m\"%(Hc1,Hc2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" the critical field at 3K temp is 0.066 A/m and at 10K ia -0.076 A/m\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.3 page no-660"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"#given\n",
"#critical magnetic field\n",
"Hc=7.9*10**3 #A/m\n",
"#diameter of aluminium wire\n",
"d=1*10**-3 #m\n",
"#critical current is give by\n",
"Ic=2*(pi)*d*Hc #A\n",
"print \" the critical current which can pass through a long thin superconducting wire of aluminium is %0.3f A\"%(Ic)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" the critical current which can pass through a long thin superconducting wire of aluminium is 49.637 A\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.4 page no-667"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given\n",
"#specific density of lead\n",
"sd=11.4\n",
"#density of lead\n",
"rho=sd*10**3 #kg/m**3\n",
"#atomic weight of lead\n",
"Aw=207.2 #kg/kg-mol\n",
"#velocity of sound in lead\n",
"v=1200 #m/s\n",
"NA=6.023*10**26 #particles/kg-mol (avogadro's number)\n",
"e=1.602*10**-19 #C/electrons (charge on an electron)\n",
"m=9.1*10**-31 #kg (mass of electron)\n",
"mu0=4*(pi)*10**-7 #H/m (permeability)\n",
"#since lead is type I superconductor, so London's theory of superconductivity is applicable\n",
"#so\n",
"ne=2*rho*NA/Aw #electrons/m**3\n",
"#critical current density\n",
"Ied=ne*e*v #A/m**2\n",
"#depth of penetration at the surface of lead\n",
"dp=sqrt(m/(mu0*ne*e**2))*10**10 #A\n",
"print \"\"\"the electron density is %0.3e electrons/m**3\n",
"the critical current density is %0.3e A/m**2\n",
"the depth of penetration is %0.3e A\"\"\"%(ne,Ied,dp)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the electron density is 6.628e+28 electrons/m**3\n",
"the critical current density is 1.274e+13 A/m**2\n",
"the depth of penetration is 2.063e+02 A\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.9 page no-673"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#magnetic field at 0K temp \n",
"H0=65*10**3 #A/m\n",
"#critical temp \n",
"Tc=7.18 #K\n",
"#diameter of wire\n",
"d=1*10**-3 #m\n",
"#radius of wire\n",
"r=d/2 #m\n",
"#area of cross section\n",
"A=(pi)*r**2 #m**2\n",
"#to find the current density at 4.2 K\n",
"#since it is given that Hc is parabolicaly dependent on T, so\n",
"T=4.2 #K\n",
"Hc=H0*(1-T**2/Tc**2) #A/m\n",
"#critical current\n",
"Ic=2*(pi)*r*Hc #A\n",
"#critical current density Jc\n",
"Jc=Ic/A #A/m**2\n",
"print \" the critical current density of lead is %0.3e A/m**2\"%(Jc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" the critical current density of lead is 1.710e+08 A/m**2\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.10 page no-673"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given\n",
"#critical field at 3K and 14 K are 21 A/m and 10 A/m\n",
"T1=7 #K\n",
"T2=14 #K\n",
"Hc1=21 #A/m\n",
"Hc2=10 #A/m\n",
"#DETERMINING CRITICAL TEMP\n",
"#as we know that H=H0*(1-T**2/Tc**2)\n",
"#so we get\n",
"#71=H0*(1-7**2/Tc**2) ----(1)\n",
"#10=H0*(1-14**2/Tc**2) --(2)\n",
"#dividing 1 and 2 we get\n",
"#71/10=(Tc**2-7**2)/(Tc**2-14**2)\n",
"#on solving we get\n",
"Tc=sqrt(3626/11) #K\n",
"#DETERMINING CRITICAL FIELD AT 0K\n",
"H0=Hc1/(1-T1**2/Tc**2) #A/m\n",
"#DETERMINING CRITICAL FIELD AT \n",
"T=4.2 #K\n",
"Hc=H0*(1-T**2/Tc**2) #A/m\n",
"print \" the critical temp is %0.3f K\\n, the critical field at 0K is %0.3f A/m and critical field at 4.2 K is %0.3f A/m\"%(Tc,H0,Hc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" the critical temp is 18.156 K\n",
", the critical field at 0K is 24.667 A/m and critical field at 4.2 K is 23.347 A/m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-22.11 page no-674"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#given\n",
"#depth of penetration at 3K is 39.8 nm and at 7.1 K is 1730 A\n",
"T1=3 #K\n",
"T2=7.1 #K\n",
"dp1=39.6*10**-9 #m\n",
"dp2=1730*10**-10 #m\n",
"#as we know that depth of penetration and temp are related as\n",
"#(dp(T)/dp(T0))=1/(1-t**4/Tc**4)\n",
"#so we get\n",
"#at 3K\n",
"#let dp(T0)=dp0\n",
"#dp0=sqrt(dp1**2*(1-T1**4/Tc**4)) -(1)\n",
"#also\n",
"#dp0=sqrt(dp2**2*(1-T2**4/Tc**4)) .----(2)\n",
"#solving 1 and 2 we get\n",
"#((Tc**4-81)/(Tc**4-(7.1)**4))=(173)**2/(39.6)**2\n",
"#so we get\n",
"Tc=(48417.9/18.085)**(1/4) #K\\\n",
"#depth of penetration at absolute zero willbe\n",
"dp0=sqrt(dp1**2*(1-T1**4/Tc**4))*10**9 #nm\n",
"print \" critica temp is %0.3f K\\n and depth of penetration at critica zero is %0.3f nm\"%(Tc,dp0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" critica temp is 7.193 K\n",
" and depth of penetration at critica zero is 38.996 nm\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|