1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
{
"metadata": {
"name": "",
"signature": "sha256:832a91ae4051faf82e71f1eeca9ef1ab61ad84ac2a8a6a3e0aeb6be4b007f372"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ch-11, Theories of inelastic, enelastic and viscoelastic deformation and fracture"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.1 page no- 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import sqrt\n",
"#given\n",
"#applied stress\n",
"sigmax=3.5 #MPa\n",
"#aluminium crystal slips from (111) plane in the direction (110) when the stess is applied to (1-11)\n",
"#so\n",
"h1=1\n",
"k1=1\n",
"l1=1\n",
"h2=1\n",
"k2=-1\n",
"l2=1\n",
"#magnitude of plane (111)\n",
"M1=sqrt(h1**2+k1**2+l1**2)\n",
"#magnitude of (1-11)\n",
"M2=sqrt(h2**2+k2**2+l2**2)\n",
"#direction (110)\n",
"h3=1\n",
"k3=1\n",
"l3=0\n",
"#magnitude of direction(110)\n",
"M3=sqrt(h3**2+k3**2+l3**2)\n",
"#the angle between the planes (111) and (1-11) is \n",
"cosphie=((h1*h2+k1*k2+l1*l2)/(M1*M2))\n",
"sinphie=sqrt(1-(cosphie)**2)\n",
"#similarly angle between the plane (111) and the direction (110) is given by\n",
"costheta=((h1*h3+k1*k3+l1*l3)/(M1*M3)) \n",
"#critical resolved shear stress\n",
"taucr=sigmax*2*sinphie*cosphie*costheta/2 #MPa\n",
"print \"the critical resolved shear stress is %0.3f MPa\"%(taucr)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the critical resolved shear stress is 0.898 MPa\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"exaplme-11.2 page no-351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#shera stress\n",
"tau=715*10**6 #Pa\n",
"#shear modulus\n",
"G=25*10**9 #Pa\n",
"#atomic radius\n",
"b=4.05*10**-10 #m\n",
"#as we know that \n",
"#tau=G*b/l\n",
"#so\n",
"l=G*b/tau #m\n",
"print \"the length of frank- read source in aluminium crystal is %.10f m\"%(l)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the length of frank- read source in aluminium crystal is 0.0000000142 m\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.2 page no-351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#shear modulous\n",
"G=25*10**9 #Pa\n",
"#shear stress\n",
"tau=50*10**6 #Pa\n",
"#lattice constant of aluminium is\n",
"a=4.05*10**-10 #m\n",
"#burger's vector for aluminium is 1/2(110)\n",
"h=1\n",
"k=1\n",
"l=0\n",
"#atomic radius of aluminium \n",
"b=a/sqrt(h**2+k**2+l**2) # m\n",
"#as we know that\n",
"#tau=G*b/L\n",
"#so\n",
"L=G*b/tau #m\n",
"#disloaction density is rhoD (let)\n",
"rhoD =1/L**2 # per m**2 (calculation mistake, there in book formula written is correct but calculation is wrong)\n",
"print \"the dislocation density is %0.3e per m**2\"%(rhoD)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the dislocation density is 4.877e+13 per m**2\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.4 page no-352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#burger vector\n",
"b=4*10**-10 #m\n",
"#density\n",
"N=10**13 #lines/m**2\n",
"#velocity\n",
"v=10**-5 #m/s\n",
"#rate of straining\n",
"epsilonP=N*b*v #lines/sec\n",
"print \"the rate of starining is %0.3f lines/sec\"%(epsilonP)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the rate of starining is 0.040 lines/sec\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.5 page no-357"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log, exp\n",
"#given\n",
"#conventional stress\n",
"sigmac=98.9 #MPa\n",
"#conventional strain\n",
"epsilonc=0.35 #mm/mm\n",
"#as we know that\n",
"epsilont=log(1+epsilonc) #mm/mm\n",
"#also\n",
"#sigmac=sigmat*exp(-epsilont) \n",
"#so\n",
"sigmat=sigmac/exp(-epsilont) #MPa\n",
"print \"the true strees is %0.3f MPa\\n and true strain is %0.3f mm/mm\"%(sigmat,epsilont)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the true strees is 133.515 MPa\n",
" and true strain is 0.300 mm/mm\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.6 page no-357"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#material constant\n",
"K=500 #MPa\n",
"#strain hardenening coefficient\n",
"n=0.20\n",
"#according to true stress-strain relation\n",
"#sigmat=d sigmat/d epsilont=d(Kepsilont**n)/d epsilont\n",
"#so we get\n",
"#sigmat=n*K*epsilont**(n-1) -----(1)\n",
"#also we know that\n",
"#sigmat=K*epsilont**n ------------(2)\n",
"#equating (1) and (2)\n",
"epsilont=n\n",
"#also we know that\n",
"#epsilont=log (1+epsilonc)\n",
"#so\n",
"epsilonc=exp(epsilont)-1 \n",
"#now\n",
"sigmat=K*epsilont**n #MPa\n",
"print \"\"\"the maximum tensile strength %0.3f\n",
"the linear strain are %0.3f MPa\"\"\"%(epsilonc,sigmat)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the maximum tensile strength 0.221\n",
"the linear strain are 362.390 MPa\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"exapmle-11.7 page no-363"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#applied strain\n",
"epsilon=0.4\n",
"#immediate stress\n",
"sigmai=10*10**9 #Pa\n",
"#after 42 days stress is\n",
"sigma=5*10**9 #Pa\n",
"t=42 #days\n",
"#as we know that\n",
"#sigma=sigmai*exp(-t/tr)\n",
"#so\n",
"tr=t/log(sigmai/sigma) #days\n",
"#stress after 90 days\n",
"t90=90 #days\n",
"sigma90=sigmai*exp(-t90/tr)*10**-9 #MPa\n",
"print \"\"\"relaxation time for the tensile stress to decrease from 10 to 5 MPa is %0.3f days\n",
"the stress after 90 days is %0.3f MPa\"\"\"%(tr,sigma90)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"relaxation time for the tensile stress to decrease from 10 to 5 MPa is 60.593 days\n",
"the stress after 90 days is 2.264 MPa\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.8 page no-370"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"#given\n",
"#crack length of glass piece\n",
"l=3*10**-6/2 #m divided by 2 because min general we consider 2*l be the length of crack\n",
"#young modulus\n",
"E=70*10**9 #Pa\n",
"#specific surface energy\n",
"gammae=1.05 #/J/m**2\n",
"#fracture strength\n",
"sigmaf=sqrt(2*E*gammae/(pi)/l) #N/m**2\n",
"#ratio of strength and young's modulus\n",
"R=sigmaf/E \n",
"print \"\"\"fracture strength is %0.3e N/m**2\n",
"the ratio of strength and youngs modulus is %0.3f\"\"\"%(sigmaf,R)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fracture strength is 1.766e+08 N/m**2\n",
"the ratio of strength and youngs modulus is 0.003\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"exaple-11.9 page no-370"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#young's modulus\n",
"E=71*10**9 #Pa\n",
"#fracture strength\n",
"sigmaf=115*10**6 #Pa\n",
"#lenght of crack\n",
"#2l=6 micro m\n",
"#so\n",
"l=6/2*10**-6 #m\n",
"#as we know that\n",
"#sigmaf=sqrt(2*E*sigmac/(pi)/l)\n",
"#so\n",
"sigmac=(sigmaf)**2*(pi)*l/2/E #J/m**2 \n",
"print \"surface energy of the etched glass is %0.3f J/m**2\"%(sigmac)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"surface energy of the etched glass is 0.878 J/m**2\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.10 page no-370"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"E=70*10**9 #Pa\n",
"gammae=0.85 #J/m**2\n",
"l=2*10**-6 #m\n",
"#necessary stress to satisfy the griffith's energy\n",
"sigmaf=sqrt(2*E*gammae/(pi)/l)/10**6 #Pa\n",
"print \"the necessary stress is %0.3f MPa\"%(sigmaf)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the necessary stress is 137.621 MPa\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-11.11 page 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"E=72*10**9 #Pa\n",
"gammae=0.9 #J/m**2\n",
"sigmaf=17.5*10**6 #Pa\n",
"#as we know that\n",
"#sigmaf=sqrt(2*E*gammae/(pi)/l) #N/m**2\n",
"#so\n",
"l=2*E*gammae/(pi)/(sigmaf)**2*1000 #mm\n",
"#length of intenal crack\n",
"L=2*l #m\n",
"print \"\"\"length of crack on the outer surface is %0.3f mm\n",
"length of crack internally %0.3f mm\"\"\"%(l,L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"length of crack on the outer surface is 0.135 mm\n",
"length of crack internally 0.269 mm\n"
]
}
],
"prompt_number": 26
}
],
"metadata": {}
}
]
}
|