1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Characterisation of material"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, page no-89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# wavelength and frequency of X-rays\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"h=6.626*10**-34 # Planck's constant\n",
"e=1.6*10**-19 # charge of an electron\n",
"c=3.0*10**8 # speed of light\n",
"v=10000.0 # Applied potential difference\n",
"\n",
"#Calculation\n",
"lam_min=(h*c)/(e*v)\n",
"V=c/lam_min\n",
"\n",
"#Result\n",
"print('\\n(i)\\nThe wavelength of X-rays emitted Lamda_min = %.2f A\u00b0\\n(ii)\\nThe frequency of X-ray beam emitted is %.1f*10^18 Hz'%(lam_min*10**10,V*10**-18))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(i)\n",
"The wavelength of X-rays emitted Lamda_min = 1.24 A\u00b0\n",
"(ii)\n",
"The frequency of X-ray beam emitted is 2.4*10^18 Hz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, page no-89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# wavelength and velocity of electrons\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"\n",
"v=10000.0 # Applied potential difference\n",
"i=2*10**-3 # Current\n",
"e=1.6*10**-19 # charge of an electron\n",
"t=1.0 # time in second\n",
"m=9.1*10**-31 # mass of an electrons\n",
"\n",
"#(i)\n",
"\n",
"#Calculation\n",
"n=i*t/e\n",
"\n",
"#Result\n",
"print('The no of electrons striking the target per second =%.2f *10^16'%(n*10**-16))\n",
"\n",
"#(ii)\n",
"\n",
"#Calculation\n",
"v1=math.sqrt(2*e*v/m)\n",
"\n",
"#(iii)\n",
"\n",
"#Calculation\n",
"lam=12400.0/v\n",
"\n",
"#Result\n",
"print('\\n(ii)\\nThe velocity of electron =%.2f*10^7 m/s\\n(iii)\\nWavelength of x-rays=%.2f A\u00b0'%(v1*10**-7,lam))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The no of electrons striking the target per second =1.25 *10^16\n",
"\n",
"(ii)\n",
"The velocity of electron =5.93*10^7 m/s\n",
"(iii)\n",
"Wavelength of x-rays=1.24 A\u00b0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, page no-90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# wavelength and angle for 2nd order bragg reflection\n",
"\n",
"import math\n",
"#variable Declaration\n",
"d=5.6534*10**-10 # interplanar spacing\n",
"theta=13.6666 # glancing angle\n",
"n=1.0 # order of diffraction\n",
"\n",
"#(i)\n",
"#Calculation\n",
"lam=2*d*math.sin(theta*math.pi/180)/n\n",
"\n",
"#Result \n",
"print('\\n(i)\\nWavelength of the X-rays, Lambda =%.3f*10^-10 m'%(lam*10**10))\n",
"\n",
"#(ii)\n",
"#calculation\n",
"n=2.0\n",
"theta=math.asin(n*lam/(2*d))\n",
"theta=theta*180/math.pi\n",
"\n",
"#Result\n",
"print('\\n(ii)\\n2nd order Bragg reflection at angle Theta2 = %f\u00b0'%theta)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(i)\n",
"Lambda =2.671*10^-10 m\n",
"\n",
"(ii)\n",
"2nd order Bragg reflection at angle Theta2 = 28.199528\u00b0\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, page no-91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Grating spacing and glancing angle\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"v=24800.0 # Applied potential difference\n",
"n=1.0 # order of diffraction\n",
"lam=1.54*10**-10 # wavelength of the X-ray beam\n",
"ga=15.8 # glancing angle\n",
"\n",
"#(i)\n",
"\n",
"#calculation\n",
"d=n*lam/(2*math.sin(ga*math.pi/180))\n",
"\n",
"#Result\n",
"print('\\n(i)\\nGrating spacing for NaCl crystal =%.3f *10^-10 m'%(d*10**10))\n",
"\n",
"#(ii)\n",
"\n",
"#calculation\n",
"lam_min=12400.0/v\n",
"lam_min=lam_min*10**-10\n",
"theta=math.asin(n*lam_min/(2*d))\n",
"theta=theta*180/math.pi\n",
"\n",
"#Result\n",
"print('\\n(ii)\\nGlancing angle for minimum wavelength = %.3f degrees'%theta)\n",
"# Glancing angle in the book is in the degree second format"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(i)\n",
"Grating spacing for NaCl crystal =2.828 *10^-10 m\n",
"\n",
"(ii)\n",
"Glancing angle for minimum wavelength = 5.072 degrees\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, page no-92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# wavelength of radiation\n",
"\n",
"import math\n",
"#variable Declaration\n",
"lam=0.7078 *10**-10 # wavelength of Ka line from molybdenum\n",
"wt=42.0 # Atomic number of molybdenum\n",
"wt1=48.0 # Atomic number of cadmium\n",
"\n",
"#calculation\n",
"lam1=(lam*(wt-1)**2)/(wt1-1)**2\n",
"\n",
"#Result\n",
"print('\\nWavelength of cadmium radiation is %.4f A\u00b0'%(lam1*10**10))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Wavelength of cadmium radiation is 0.5386 A\u00b0\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, page no-92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Energy of thermal neutron\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"lam=10.0**-10 # Wavelength of neutron\n",
"h=6.626*10**-34 # Planck's constant\n",
"m=1.675*10**-27 # mass of an electron\n",
"e1=1.602*10**-19 # charge of an electron\n",
"\n",
"#calculation\n",
"e=(h**2)/(2*m*lam**2)\n",
"e=e/e1\n",
"\n",
"#Result\n",
"print('\\nThe energy of thermal neutron with wavelength 1 A\u00b0 is %.2f eV'%e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of thermal neutron with wavelength 1A\u00b0 is 0.08 eV\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, page no-94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# effect of temperature on wavelength\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"lam=0.1 # Wavelength of neutron in nm\n",
"\n",
"#calculation\n",
"T=(2.516**2)/(lam)**2\n",
"\n",
"#Result\n",
"print('Temperature of thermal neutron corresponding to 1 A\u00b0 is %.0f K'%T)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature of thermal neutron corresponding to 1 A\u00b0 is 633 K\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|